{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Build Earthquake Catalog\n", "\n", "In this final notebook, we read the matched-filter database, remove the multiple detections and write a clean earthquake catalog in a csv file." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import BPMF\n", "import glob\n", "import h5py as h5\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import os\n", "import pandas as pd\n", "import sys\n", "\n", "from tqdm import tqdm\n", "from time import time as give_time\n", "\n", "n_CPUs = 12\n", "os.environ[\"OMP_NUM_THREADS\"] = str(n_CPUs)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# PROGRAM PARAMETERS\n", "NETWORK_FILENAME = \"network.csv\"\n", "TEMPLATE_DB = \"template_db\"\n", "MATCHED_FILTER_DB = \"matched_filter_db\"\n", "CHECK_SUMMARY_FILE = False\n", "PATH_MF = os.path.join(BPMF.cfg.OUTPUT_PATH, MATCHED_FILTER_DB)\n", "DATA_FOLDER = \"preprocessed_2_12\"" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# read network metadata\n", "net = BPMF.dataset.Network(NETWORK_FILENAME)\n", "net.read()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Read the detected events' metadata for each template" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "ERROR 1: PROJ: proj_create_from_database: Open of /home/ebeauce/miniconda3/envs/hy7_py310/share/proj failed\n", "Reading catalog: 100%|██████████| 8/8 [00:00<00:00, 12.84it/s]\n" ] } ], "source": [ "# template filenames\n", "template_filenames = glob.glob(os.path.join(BPMF.cfg.OUTPUT_PATH, TEMPLATE_DB, \"template*\"))\n", "template_filenames.sort()\n", "\n", "# initialize the template group\n", "template_group = BPMF.dataset.TemplateGroup.read_from_files(template_filenames, net)\n", "template_group.read_catalog(\n", " extra_attributes=[\"cc\"],\n", " progress=True,\n", " db_path=PATH_MF,\n", " check_summary_file=CHECK_SUMMARY_FILE,\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The `BPMF.dataset.TemplateGroup` now has a `catalog` attribute, which is a `BPMF.dataset.Catalog` instance." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "template_group.catalog" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
longitudelatitudedepthorigin_timecctid
event_id
2.030.41386740.74953116.1796882012-07-07 06:56:02.160000+00:000.4326282
3.030.43974640.739453-0.9335942012-07-07 06:56:02.200000+00:000.2906063
4.030.41435540.7497669.3242192012-07-07 06:56:02.600000+00:000.3307004
0.030.40947340.7497668.9179692012-07-07 06:56:02.800000+00:001.0000000
1.030.36552740.7366414.6523442012-07-07 06:56:03.560000+00:000.3073221
.....................
3.1530.43974640.739453-0.9335942012-07-07 16:50:34.760000+00:000.2445993
1.2730.36552740.7366414.6523442012-07-07 16:50:36.120000+00:000.3099781
2.3230.41386740.74953116.1796882012-07-07 19:23:20.520000+00:000.1463542
3.1630.43974640.739453-0.9335942012-07-07 20:23:54.480000+00:000.1805673
1.2830.36552740.7366414.6523442012-07-07 20:23:55.840000+00:000.2086751
\n", "

158 rows × 6 columns

\n", "
" ], "text/plain": [ " longitude latitude depth origin_time \\\n", "event_id \n", "2.0 30.413867 40.749531 16.179688 2012-07-07 06:56:02.160000+00:00 \n", "3.0 30.439746 40.739453 -0.933594 2012-07-07 06:56:02.200000+00:00 \n", "4.0 30.414355 40.749766 9.324219 2012-07-07 06:56:02.600000+00:00 \n", "0.0 30.409473 40.749766 8.917969 2012-07-07 06:56:02.800000+00:00 \n", "1.0 30.365527 40.736641 4.652344 2012-07-07 06:56:03.560000+00:00 \n", "... ... ... ... ... \n", "3.15 30.439746 40.739453 -0.933594 2012-07-07 16:50:34.760000+00:00 \n", "1.27 30.365527 40.736641 4.652344 2012-07-07 16:50:36.120000+00:00 \n", "2.32 30.413867 40.749531 16.179688 2012-07-07 19:23:20.520000+00:00 \n", "3.16 30.439746 40.739453 -0.933594 2012-07-07 20:23:54.480000+00:00 \n", "1.28 30.365527 40.736641 4.652344 2012-07-07 20:23:55.840000+00:00 \n", "\n", " cc tid \n", "event_id \n", "2.0 0.432628 2 \n", "3.0 0.290606 3 \n", "4.0 0.330700 4 \n", "0.0 1.000000 0 \n", "1.0 0.307322 1 \n", "... ... ... \n", "3.15 0.244599 3 \n", "1.27 0.309978 1 \n", "2.32 0.146354 2 \n", "3.16 0.180567 3 \n", "1.28 0.208675 1 \n", "\n", "[158 rows x 6 columns]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "template_group.catalog.catalog" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Remove the multiple detections\n", "\n", "Remove multiple detections with the `TemplateGroup.remove_multiples` method." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "# DISTANCE_CRITERION_KM: Distance, in km, between two detected events (within uncertainties) below which \n", "# detected events are investigated for equality.\n", "DISTANCE_CRITERION_KM = 15.0\n", "# DT_CRITERION_SEC: Inter-event time, in seconds, between two detected events below which\n", "# detected events are investigated for equality.\n", "DT_CRITERION_SEC = 4.0\n", "# SIMILARITY_CRITERION: Inter-template correlation coefficient below which detected events are investigated for equality.\n", "SIMILARITY_CRITERION = 0.10\n", "# N_CLOSEST_STATIONS: When computing the inter-template correlation coefficient, use the N_CLOSEST_STATIONS closest stations\n", "# of a given pair of templates. This parameter is relevant for studies with large seismic networks.\n", "N_CLOSEST_STATIONS = 10" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "# we need to read the waveforms first\n", "template_group.read_waveforms()\n", "template_group.normalize(method=\"rms\")" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Computing the similarity matrix...\n", "Computing the inter-template directional errors...\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/home/ebeauce/miniconda3/envs/hy7_py310/lib/python3.10/site-packages/BPMF/dataset.py:2884: RuntimeWarning: invalid value encountered in true_divide\n", " unit_direction /= np.sqrt(np.sum(unit_direction**2, axis=1))[\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Searching for events detected by multiple templates\n", "All events occurring within 4.0 sec, with uncertainty ellipsoids closer than 15.0 km will and inter-template CC larger than 0.10 be considered the same\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Removing multiples: 100%|██████████| 158/158 [00:00<00:00, 2250.65it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "0.07s to flag the multiples\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "template_group.remove_multiples(\n", " n_closest_stations=N_CLOSEST_STATIONS,\n", " dt_criterion=DT_CRITERION_SEC,\n", " distance_criterion=DISTANCE_CRITERION_KM,\n", " similarity_criterion=SIMILARITY_CRITERION,\n", " progress=True,\n", ")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The catalog now has a new column: `unique_event`." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
longitudelatitudedepthorigin_timecctidorigin_time_secinterevent_time_secunique_event
event_id
2.030.41386740.74953116.1796882012-07-07 06:56:02.160000+00:000.43262821.341644e+090.00False
3.030.43974640.739453-0.9335942012-07-07 06:56:02.200000+00:000.29060631.341644e+090.04False
4.030.41435540.7497669.3242192012-07-07 06:56:02.600000+00:000.33070041.341644e+090.40False
0.030.40947340.7497668.9179692012-07-07 06:56:02.800000+00:001.00000001.341644e+090.20True
1.030.36552740.7366414.6523442012-07-07 06:56:03.560000+00:000.30732211.341644e+090.76False
..............................
3.1530.43974640.739453-0.9335942012-07-07 16:50:34.760000+00:000.24459931.341680e+095059.48False
1.2730.36552740.7366414.6523442012-07-07 16:50:36.120000+00:000.30997811.341680e+091.36True
2.3230.41386740.74953116.1796882012-07-07 19:23:20.520000+00:000.14635421.341689e+099164.40True
3.1630.43974640.739453-0.9335942012-07-07 20:23:54.480000+00:000.18056731.341693e+093633.96False
1.2830.36552740.7366414.6523442012-07-07 20:23:55.840000+00:000.20867511.341693e+091.36True
\n", "

158 rows × 9 columns

\n", "
" ], "text/plain": [ " longitude latitude depth origin_time \\\n", "event_id \n", "2.0 30.413867 40.749531 16.179688 2012-07-07 06:56:02.160000+00:00 \n", "3.0 30.439746 40.739453 -0.933594 2012-07-07 06:56:02.200000+00:00 \n", "4.0 30.414355 40.749766 9.324219 2012-07-07 06:56:02.600000+00:00 \n", "0.0 30.409473 40.749766 8.917969 2012-07-07 06:56:02.800000+00:00 \n", "1.0 30.365527 40.736641 4.652344 2012-07-07 06:56:03.560000+00:00 \n", "... ... ... ... ... \n", "3.15 30.439746 40.739453 -0.933594 2012-07-07 16:50:34.760000+00:00 \n", "1.27 30.365527 40.736641 4.652344 2012-07-07 16:50:36.120000+00:00 \n", "2.32 30.413867 40.749531 16.179688 2012-07-07 19:23:20.520000+00:00 \n", "3.16 30.439746 40.739453 -0.933594 2012-07-07 20:23:54.480000+00:00 \n", "1.28 30.365527 40.736641 4.652344 2012-07-07 20:23:55.840000+00:00 \n", "\n", " cc tid origin_time_sec interevent_time_sec unique_event \n", "event_id \n", "2.0 0.432628 2 1.341644e+09 0.00 False \n", "3.0 0.290606 3 1.341644e+09 0.04 False \n", "4.0 0.330700 4 1.341644e+09 0.40 False \n", "0.0 1.000000 0 1.341644e+09 0.20 True \n", "1.0 0.307322 1 1.341644e+09 0.76 False \n", "... ... ... ... ... ... \n", "3.15 0.244599 3 1.341680e+09 5059.48 False \n", "1.27 0.309978 1 1.341680e+09 1.36 True \n", "2.32 0.146354 2 1.341689e+09 9164.40 True \n", "3.16 0.180567 3 1.341693e+09 3633.96 False \n", "1.28 0.208675 1 1.341693e+09 1.36 True \n", "\n", "[158 rows x 9 columns]" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "template_group.catalog.catalog" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The final catalog is made of the unique events only." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "template_group.catalog.catalog = template_group.catalog.catalog[template_group.catalog.catalog[\"unique_event\"]]" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
longitudelatitudedepthorigin_timecctidorigin_time_secinterevent_time_secunique_event
event_id
0.030.40947340.7497668.9179692012-07-07 06:56:02.800000+00:001.00000001.341644e+090.20True
0.130.40947340.7497668.9179692012-07-07 06:56:52.720000+00:000.47270901.341644e+090.20True
0.230.40947340.7497668.9179692012-07-07 07:07:46.040000+00:000.40605701.341645e+090.16True
3.330.43974640.739453-0.9335942012-07-07 07:09:59.600000+00:000.24761031.341645e+09132.64True
0.330.40947340.7497668.9179692012-07-07 07:10:12.680000+00:000.18072501.341645e+090.64True
4.330.41435540.7497669.3242192012-07-07 07:10:20.080000+00:000.39899441.341645e+097.40True
4.430.41435540.7497669.3242192012-07-07 07:10:39.240000+00:000.37755241.341645e+0918.12True
2.430.41386740.74953116.1796882012-07-07 07:10:53.600000+00:000.39278321.341645e+0913.32True
1.630.36552740.7366414.6523442012-07-07 07:11:08.560000+00:001.00000011.341645e+090.76True
1.730.36552740.7366414.6523442012-07-07 07:11:20.040000+00:000.18666011.341645e+0911.36True
1.830.36552740.7366414.6523442012-07-07 07:11:34.480000+00:000.23105811.341645e+0914.44True
4.730.41435540.7497669.3242192012-07-07 07:12:06.240000+00:000.52092741.341645e+090.40True
2.730.41386740.74953116.1796882012-07-07 07:14:24.960000+00:001.00000021.341645e+09137.68True
2.830.41386740.74953116.1796882012-07-07 07:15:44.840000+00:000.18430121.341645e+0978.48True
4.930.41435540.7497669.3242192012-07-07 07:18:17.120000+00:000.39467741.341645e+09152.28True
0.1030.40947340.7497668.9179692012-07-07 07:22:16.480000+00:000.16937601.341646e+09238.40True
1.1230.36552740.7366414.6523442012-07-07 07:23:09.600000+00:000.53866111.341646e+090.76True
2.930.41386740.74953116.1796882012-07-07 07:24:09.520000+00:000.18857321.341646e+0959.92True
4.1130.41435540.7497669.3242192012-07-07 07:24:34.080000+00:001.00000041.341646e+090.40True
2.1130.41386740.74953116.1796882012-07-07 07:26:09.880000+00:000.21372721.341646e+0994.76True
2.1230.41386740.74953116.1796882012-07-07 07:27:21.520000+00:000.24320621.341646e+0971.64True
4.1330.41435540.7497669.3242192012-07-07 07:29:49+00:000.20827741.341646e+09146.80True
0.1430.40947340.7497668.9179692012-07-07 07:34:43.160000+00:000.51737901.341646e+090.20True
1.1530.36552740.7366414.6523442012-07-07 07:35:59.280000+00:000.33824511.341647e+090.76True
6.830.36308640.727969-0.8828122012-07-07 07:39:18.800000+00:000.28242161.341647e+090.12True
3.1230.43974640.739453-0.9335942012-07-07 08:00:23.280000+00:000.20178831.341648e+091264.48True
2.1430.41386740.74953116.1796882012-07-07 08:10:46.520000+00:000.15982021.341649e+09621.88True
4.1730.41435540.7497669.3242192012-07-07 08:15:48.920000+00:000.21608041.341649e+090.44True
4.1830.41435540.7497669.3242192012-07-07 08:17:35.040000+00:000.45378141.341649e+090.44True
2.1730.41386740.74953116.1796882012-07-07 08:30:27.200000+00:000.22064821.341650e+09771.12True
2.1830.41386740.74953116.1796882012-07-07 08:41:19.160000+00:000.23285921.341650e+09651.96True
2.1930.41386740.74953116.1796882012-07-07 08:45:27.560000+00:000.22371821.341651e+09247.76True
4.2030.41435540.7497669.3242192012-07-07 08:46:34.360000+00:000.27581641.341651e+090.40True
2.2130.41386740.74953116.1796882012-07-07 08:47:00.520000+00:000.41156321.341651e+0925.08True
3.1330.43974640.739453-0.9335942012-07-07 08:48:43.720000+00:001.00000031.341651e+090.04True
1.2030.36552740.7366414.6523442012-07-07 08:50:03+00:000.15116111.341651e+0977.80True
4.2230.41435540.7497669.3242192012-07-07 09:10:00.680000+00:000.38930941.341652e+090.40True
1.2230.36552740.7366414.6523442012-07-07 09:10:56.680000+00:000.16300811.341652e+090.96True
2.2430.41386740.74953116.1796882012-07-07 09:20:12.040000+00:000.69318221.341653e+09555.36True
6.1330.36308640.727969-0.8828122012-07-07 09:27:11.240000+00:000.36098361.341653e+090.08True
2.2530.41386740.74953116.1796882012-07-07 09:42:13.400000+00:000.20744521.341654e+09902.16True
2.2630.41386740.74953116.1796882012-07-07 09:46:04.520000+00:000.25070521.341654e+09230.48True
2.2730.41386740.74953116.1796882012-07-07 09:52:19.200000+00:000.15078921.341655e+09374.04True
1.2530.36552740.7366414.6523442012-07-07 09:59:28.280000+00:000.19117611.341655e+090.96True
2.2830.41386740.74953116.1796882012-07-07 10:05:20.640000+00:000.15869421.341656e+09352.36True
5.030.42000040.750000-2.0000002012-07-07 10:16:39.560000+00:001.00000051.341656e+09678.92True
6.1430.36308640.727969-0.8828122012-07-07 10:41:35.520000+00:001.00000061.341658e+090.12True
2.2930.41386740.74953116.1796882012-07-07 11:15:32.240000+00:000.21973621.341660e+092036.72True
2.3030.41386740.74953116.1796882012-07-07 11:23:41.120000+00:000.28939821.341660e+09488.24True
2.3130.41386740.74953116.1796882012-07-07 12:13:39.280000+00:000.26849521.341663e+092997.52True
7.030.34000040.74000022.0000002012-07-07 15:26:15.280000+00:001.00000071.341675e+0911555.36True
1.2730.36552740.7366414.6523442012-07-07 16:50:36.120000+00:000.30997811.341680e+091.36True
2.3230.41386740.74953116.1796882012-07-07 19:23:20.520000+00:000.14635421.341689e+099164.40True
1.2830.36552740.7366414.6523442012-07-07 20:23:55.840000+00:000.20867511.341693e+091.36True
\n", "
" ], "text/plain": [ " longitude latitude depth origin_time \\\n", "event_id \n", "0.0 30.409473 40.749766 8.917969 2012-07-07 06:56:02.800000+00:00 \n", "0.1 30.409473 40.749766 8.917969 2012-07-07 06:56:52.720000+00:00 \n", "0.2 30.409473 40.749766 8.917969 2012-07-07 07:07:46.040000+00:00 \n", "3.3 30.439746 40.739453 -0.933594 2012-07-07 07:09:59.600000+00:00 \n", "0.3 30.409473 40.749766 8.917969 2012-07-07 07:10:12.680000+00:00 \n", "4.3 30.414355 40.749766 9.324219 2012-07-07 07:10:20.080000+00:00 \n", "4.4 30.414355 40.749766 9.324219 2012-07-07 07:10:39.240000+00:00 \n", "2.4 30.413867 40.749531 16.179688 2012-07-07 07:10:53.600000+00:00 \n", "1.6 30.365527 40.736641 4.652344 2012-07-07 07:11:08.560000+00:00 \n", "1.7 30.365527 40.736641 4.652344 2012-07-07 07:11:20.040000+00:00 \n", "1.8 30.365527 40.736641 4.652344 2012-07-07 07:11:34.480000+00:00 \n", "4.7 30.414355 40.749766 9.324219 2012-07-07 07:12:06.240000+00:00 \n", "2.7 30.413867 40.749531 16.179688 2012-07-07 07:14:24.960000+00:00 \n", "2.8 30.413867 40.749531 16.179688 2012-07-07 07:15:44.840000+00:00 \n", "4.9 30.414355 40.749766 9.324219 2012-07-07 07:18:17.120000+00:00 \n", "0.10 30.409473 40.749766 8.917969 2012-07-07 07:22:16.480000+00:00 \n", "1.12 30.365527 40.736641 4.652344 2012-07-07 07:23:09.600000+00:00 \n", "2.9 30.413867 40.749531 16.179688 2012-07-07 07:24:09.520000+00:00 \n", "4.11 30.414355 40.749766 9.324219 2012-07-07 07:24:34.080000+00:00 \n", "2.11 30.413867 40.749531 16.179688 2012-07-07 07:26:09.880000+00:00 \n", "2.12 30.413867 40.749531 16.179688 2012-07-07 07:27:21.520000+00:00 \n", "4.13 30.414355 40.749766 9.324219 2012-07-07 07:29:49+00:00 \n", "0.14 30.409473 40.749766 8.917969 2012-07-07 07:34:43.160000+00:00 \n", "1.15 30.365527 40.736641 4.652344 2012-07-07 07:35:59.280000+00:00 \n", "6.8 30.363086 40.727969 -0.882812 2012-07-07 07:39:18.800000+00:00 \n", "3.12 30.439746 40.739453 -0.933594 2012-07-07 08:00:23.280000+00:00 \n", "2.14 30.413867 40.749531 16.179688 2012-07-07 08:10:46.520000+00:00 \n", "4.17 30.414355 40.749766 9.324219 2012-07-07 08:15:48.920000+00:00 \n", "4.18 30.414355 40.749766 9.324219 2012-07-07 08:17:35.040000+00:00 \n", "2.17 30.413867 40.749531 16.179688 2012-07-07 08:30:27.200000+00:00 \n", "2.18 30.413867 40.749531 16.179688 2012-07-07 08:41:19.160000+00:00 \n", "2.19 30.413867 40.749531 16.179688 2012-07-07 08:45:27.560000+00:00 \n", "4.20 30.414355 40.749766 9.324219 2012-07-07 08:46:34.360000+00:00 \n", "2.21 30.413867 40.749531 16.179688 2012-07-07 08:47:00.520000+00:00 \n", "3.13 30.439746 40.739453 -0.933594 2012-07-07 08:48:43.720000+00:00 \n", "1.20 30.365527 40.736641 4.652344 2012-07-07 08:50:03+00:00 \n", "4.22 30.414355 40.749766 9.324219 2012-07-07 09:10:00.680000+00:00 \n", "1.22 30.365527 40.736641 4.652344 2012-07-07 09:10:56.680000+00:00 \n", "2.24 30.413867 40.749531 16.179688 2012-07-07 09:20:12.040000+00:00 \n", "6.13 30.363086 40.727969 -0.882812 2012-07-07 09:27:11.240000+00:00 \n", "2.25 30.413867 40.749531 16.179688 2012-07-07 09:42:13.400000+00:00 \n", "2.26 30.413867 40.749531 16.179688 2012-07-07 09:46:04.520000+00:00 \n", "2.27 30.413867 40.749531 16.179688 2012-07-07 09:52:19.200000+00:00 \n", "1.25 30.365527 40.736641 4.652344 2012-07-07 09:59:28.280000+00:00 \n", "2.28 30.413867 40.749531 16.179688 2012-07-07 10:05:20.640000+00:00 \n", "5.0 30.420000 40.750000 -2.000000 2012-07-07 10:16:39.560000+00:00 \n", "6.14 30.363086 40.727969 -0.882812 2012-07-07 10:41:35.520000+00:00 \n", "2.29 30.413867 40.749531 16.179688 2012-07-07 11:15:32.240000+00:00 \n", "2.30 30.413867 40.749531 16.179688 2012-07-07 11:23:41.120000+00:00 \n", "2.31 30.413867 40.749531 16.179688 2012-07-07 12:13:39.280000+00:00 \n", "7.0 30.340000 40.740000 22.000000 2012-07-07 15:26:15.280000+00:00 \n", "1.27 30.365527 40.736641 4.652344 2012-07-07 16:50:36.120000+00:00 \n", "2.32 30.413867 40.749531 16.179688 2012-07-07 19:23:20.520000+00:00 \n", "1.28 30.365527 40.736641 4.652344 2012-07-07 20:23:55.840000+00:00 \n", "\n", " cc tid origin_time_sec interevent_time_sec unique_event \n", "event_id \n", "0.0 1.000000 0 1.341644e+09 0.20 True \n", "0.1 0.472709 0 1.341644e+09 0.20 True \n", "0.2 0.406057 0 1.341645e+09 0.16 True \n", "3.3 0.247610 3 1.341645e+09 132.64 True \n", "0.3 0.180725 0 1.341645e+09 0.64 True \n", "4.3 0.398994 4 1.341645e+09 7.40 True \n", "4.4 0.377552 4 1.341645e+09 18.12 True \n", "2.4 0.392783 2 1.341645e+09 13.32 True \n", "1.6 1.000000 1 1.341645e+09 0.76 True \n", "1.7 0.186660 1 1.341645e+09 11.36 True \n", "1.8 0.231058 1 1.341645e+09 14.44 True \n", "4.7 0.520927 4 1.341645e+09 0.40 True \n", "2.7 1.000000 2 1.341645e+09 137.68 True \n", "2.8 0.184301 2 1.341645e+09 78.48 True \n", "4.9 0.394677 4 1.341645e+09 152.28 True \n", "0.10 0.169376 0 1.341646e+09 238.40 True \n", "1.12 0.538661 1 1.341646e+09 0.76 True \n", "2.9 0.188573 2 1.341646e+09 59.92 True \n", "4.11 1.000000 4 1.341646e+09 0.40 True \n", "2.11 0.213727 2 1.341646e+09 94.76 True \n", "2.12 0.243206 2 1.341646e+09 71.64 True \n", "4.13 0.208277 4 1.341646e+09 146.80 True \n", "0.14 0.517379 0 1.341646e+09 0.20 True \n", "1.15 0.338245 1 1.341647e+09 0.76 True \n", "6.8 0.282421 6 1.341647e+09 0.12 True \n", "3.12 0.201788 3 1.341648e+09 1264.48 True \n", "2.14 0.159820 2 1.341649e+09 621.88 True \n", "4.17 0.216080 4 1.341649e+09 0.44 True \n", "4.18 0.453781 4 1.341649e+09 0.44 True \n", "2.17 0.220648 2 1.341650e+09 771.12 True \n", "2.18 0.232859 2 1.341650e+09 651.96 True \n", "2.19 0.223718 2 1.341651e+09 247.76 True \n", "4.20 0.275816 4 1.341651e+09 0.40 True \n", "2.21 0.411563 2 1.341651e+09 25.08 True \n", "3.13 1.000000 3 1.341651e+09 0.04 True \n", "1.20 0.151161 1 1.341651e+09 77.80 True \n", "4.22 0.389309 4 1.341652e+09 0.40 True \n", "1.22 0.163008 1 1.341652e+09 0.96 True \n", "2.24 0.693182 2 1.341653e+09 555.36 True \n", "6.13 0.360983 6 1.341653e+09 0.08 True \n", "2.25 0.207445 2 1.341654e+09 902.16 True \n", "2.26 0.250705 2 1.341654e+09 230.48 True \n", "2.27 0.150789 2 1.341655e+09 374.04 True \n", "1.25 0.191176 1 1.341655e+09 0.96 True \n", "2.28 0.158694 2 1.341656e+09 352.36 True \n", "5.0 1.000000 5 1.341656e+09 678.92 True \n", "6.14 1.000000 6 1.341658e+09 0.12 True \n", "2.29 0.219736 2 1.341660e+09 2036.72 True \n", "2.30 0.289398 2 1.341660e+09 488.24 True \n", "2.31 0.268495 2 1.341663e+09 2997.52 True \n", "7.0 1.000000 7 1.341675e+09 11555.36 True \n", "1.27 0.309978 1 1.341680e+09 1.36 True \n", "2.32 0.146354 2 1.341689e+09 9164.40 True \n", "1.28 0.208675 1 1.341693e+09 1.36 True " ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "template_group.catalog.catalog" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqcAAAJACAYAAACwpM8+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABmr0lEQVR4nO3de3wcdb3/8den4U6DbSmXhILl0hQ9IJcgiBcIVDhYiAU9CikgXlt/IiKn6AE9SERRtEZRUWjFC6itFxAhiAICgSNyS7hYbk0RKpZE7oUg0gL9/P7YSdyGbHe2u/l+Nzvv5+Mxj+zMzsx+5p0tfPOd+c6YuyMiIiIiUg3GxS5ARERERGSQGqciIiIiUjXUOBURERGRqqHGqYiIiIhUDTVORURERKRqqHEqIiIiIlVDjVMRERGRGmdm25vZDWb2gJndZ2YnJ8snmdm1ZrYs+TmxwPaHmdlSM3vIzE4b1Vp1n1MRERGR2mZmDUCDu99pZvVAD3Ak8EHgGXc/J2l0TnT3/xm2bR3QCxwCrADuANrc/f7RqFU9pyIiIiI1zt373f3O5PUA8ACwHTALuChZ7SJyDdbh9gUecveH3X018Itku1GxwWjtOLatt97aV69eXfZ+XnnlFTbYoGZjqkrKPDxlHodyD0+Zh6fM03nuueeudvfDhi83s1JOcd8HvJQ3v9DdF46wz6nAXsBtwDbu3g+5BqyZbT3CfrcD/p43vwLYr4S6SlKz35YddtiB7u7usvfT3t5Oe3t7+QVJaso8PGUeh3IPT5mHp8zTMbPJFdjNS+6+T5HPGQ9cCnza3Z83s1TljbBs1K4LrdnGqYiIiMhYZ8BGKdddVWxfZhuSa5j+3N1/kyx+3Mwakl7TBuCJETZdAWyfNz8F6EtZVsl0zWkR9fX1sUvIHGUenjKPQ7mHp8zDU+bVwXJdpD8EHnD3b+a9dQVwQvL6BODyETa/A5hmZjua2UbAMcl2o1NrrY7W32effbwSp/VFRERERpuZ9Yx0Sr7OzDdPuY8BGHEfyf7fDvwfsARYkyz+HLnrTn8F7AA8CrzP3Z8xs0bgQnefmWw/EzgXqAN+5O5npz64EqnntIiurq7YJWSOMg9Pmceh3MNT5uEp8+rg7n9yd3P3N7n7nsl0lbs/7e4z3H1a8vOZZP2+wYZpMn+Vuze5+86j2TAFNU6L0j+q8JR5eMo8DuUenjIPT5lLqTQgSkRERKRKGbBh7CICU8+piIiIiFQNDYgqoq+vj8bGxgpUJGkp8/CUeRzKPTxlHp4yT6fQgKgNzXxSyn08sY4BUWOJek5FREREpGqocVrEwoWveeqXjDJlHp4yj0O5h6fMw1Pm5TFyA4TSTLVCjVMRERERqRq11NAWERERqTl1sQsITD2nRbS0tMQuIXOUeXjKPA7lHp4yD0+ZS6k0Wl9EREQkskKj9Tc287T3Oliu0frZ0NHREbuEzFHm4SnzOJR7eMo8PGUupdI1p0UMDAzELiFzlHl4yjwO5R6eMg9PmZcvaz2JWTteEREREali6jktoqGhIXYJmaPMw1PmcSj38JR5eMq8PEb2RutrQJSIiIhIZIUGRG1i5juk3MeyrA2IMrM6M7vLzK5M5ieZ2bVmtiz5ObHAdqeY2X1mdq+ZLTazTYa9f6qZuZlNzls238y6zezAZH5qss5JeeucZ2YfLPF4S9bZ2TnaHyHDKPPwlHkcyj08ZR6eMi/fuJRTrSjlWE4GHsibPw24zt2nAdcl82sxs+2ATwH7uPtu5Hqmj8l7f3vgEODRvGW7Ji8PAE7M290TwMlmtlEJNZetp6cn5McJyjwGZR6Hcg9PmYenzKVUqRqnZjYFOBy4MG/xLOCi5PVFwJEFNt8A2NTMNgA2A/ry3vsW8Fkg/9qCOmBNsszylj9JrhF8QpqaRURERGTsSdtzei65RuSavGXbuHs/QPJz6+EbuftjwDfI9Yz2A8+5+zUAZvZu4DF3v2fYNveRa8T+CTh/2C7PAeaZWdauDRYREZEMMrJ3Wr/ogCgzOwKY6e6fMLMW4FR3P8LMVrr7hLz1nnX3icO2nQhcChwNrAR+DVwC/Aa4ATjU3Z8zs+XkTv0/VaCGqcCV7r6bmV0MXAvsB3S7+09G2mb69One1tY2ND9nzhwAFi5cOLSspaWFlpYWOjo6hu7D1tDQwNy5c+ns7KSnp4dVq1ax8cYbM2/ePPr6+li8ePHQ9q2trTQ3N9Pe3j60rKmpidmzZ7No0SJ6e3uHlre3t9PT07PWtTdtbW00NjaudYPi5uZmWltbWbBgAf39/QDU19czb948urq66OrqKvuYBlXrMb3wwgssWrSopo4Jqvv3tGrVKt761rfW1DFB9f+elixZwsYbb1xTx1Ttv6c5c+YwMDBQU8dU7b+nwf+P1tIxjcbv6Ytf/OKIg5k2NfMdhy8s4IEaGRCVpnH6VeB44BVgE2ALco3LNwMt7t5vZg1Al7tPH7bt+4DD3P0jyfwHgLeQ6xG9DngxWXUKudP9+7r7P0aoYSr/bpzuSq6BexNwe6HGaaVG6y9dupTp06cXX1EqRpmHp8zjUO7hKfPwlHk6hUbrb2rmO6fcx3010jgt2gvs7qe7+xR3n0puMNP17n4ccAX/vv7zBODyETZ/FHiLmW1mZgbMAB5w9yXuvrW7T032uwLYe6SG6Qj1PAjcDxxR/PDKl/8XjoShzMNT5nEo9/CUeXjKXEpVziUK5wCHmNkyciPuzwEws0YzuwrA3W8j18t5J7Ak+byFI++uJGeT620VERERqVlZvOa0pCdEuXsX0JW8fppcT+jwdfqAmXnzZwJnFtnv1CLvLwd2y5u/h9r6PYiIiIgIenxpUa2trbFLyBxlHp4yj0O5h6fMw1Pm5ctab5weXyoiIiISWaEBUZuZeVPKfdyTlQFRWZd/ywoJQ5mHp8zjUO7hKfPwlHn5snbNaS0di4iIiIiMcbrmVERERKRKGWs/yz0L1HNaRFNT2is9pFKUeXjKPA7lHp4yD0+ZS6k0IEpEREQkskIDojY38zem3Ee3BkRlQ/4z3iUMZR6eMo9DuYenzMNT5lIqXXNaRG9vb+wSMkeZh6fM41Du4Snz8JR5+calvei0Rk6Gq+dURERERKqGGqciIiIiUjU0IEpEREQkskIDosab+W4pT+vf5hoQlQk9PT2xS8gcZR6eMo9DuYenzMNT5lIqNU6L6OzsjF1C5ijz8JR5HMo9PGUenjIv3zhPN9UKNU5FREREpGroVlIiIiIiVUyPL5W1tLW1xS4hc5R5eMo8DuUenjIPT5lLqdRzWkRjY2PsEjJHmYenzONQ7uEp8/CUeXmM7PUkZu14S9bR0RG7hMxR5uEp8ziUe3jKPDxlLqVSz6mIiIhIFdM1pyIiIiIikajntIjm5ubYJWSOMg9Pmceh3MNT5uEp8/JlrSdRjy8VERERiazQ40vrzTxt8/5G9PjSTFiwYEHsEjJHmYenzONQ7uEp8/CUefks5VQr1Dgtor+/P3YJmaPMw1PmcSj38JR5eMpcSqVrTkVERESqlAHj0naL1siVmuo5LaK+vj52CZmjzMNT5nEo9/CUeXjKXEqlAVEiIiIikRUaELWFmb85Zc/p9a4BUZnQ1dUVu4TMUebhKfM4lHt4yjw8ZV4+DYiStegfVXjKPDxlHodyD0+Zh6fMpVQaECUiIiJSxbLWk5i14xURERGRKqYBUUX09fXR2NhYgYokLWUenjKPQ7mHp8zDU+bpFBoQ9Tozf0vKC0qv0YAoEREREZHKUuO0iIULF8YuIXOUeXjKPA7lHp4yD0+Zl29cyqlWaECUiIiISAaY2Y+AI4An3H23ZNkvgenJKhOAle6+5wjbLgcGgFeBV0bz8gE1TkVERESqWAXvYfoT4Dzg4sEF7n700OeYdQDPrWP7g9z9qcqVMzI1TotoaWmJXULmKPPwlHkcyj08ZR6eMq8e7n6TmU0d6T0zM+D9wMFBixqpFo3WFxEREYmr0Gj9CWb+9pRdp79z/gbk92wudPe1LvpNGqdXDp7Wz1t+APDNQqfrzewR4FnAgQXD91tJtXT97Kjo6OiIXULmKPPwlHkcyj08ZR6eMg/qKXffJ28qpQHZBixex/tvc/e9gXcBJyaN2VGhxmkRAwMDsUvIHGUenjKPQ7mHp8zDU+bls5TTeu/fbAPgPcAvC63j7n3JzyeAy4B9y/jIdVLjVERERCTb3gk86O4rRnrTzDY3s/rB18ChwL2jVYwap0U0NDTELiFzlHl4yjwO5R6eMg9PmZevUvc5NbPFwC3AdDNbYWYfSd46hmGn9M2s0cyuSma3Af5kZvcAtwO/c/c/lHdU66hTA6JERERE4lrXgKgDU56zv0KPL82Gzs7O2CVkjjIPT5nHodzDU+bhKXMplRqnRfT09MQuIXOUeXjKPA7lHp4yD0+Zl2+0B0RVGzVORURERKRq6AlRIiIiIlXKyF5PogZEFTEwMEB9fX0FKpK0lHl4yjwO5R6eMg9PmadTaEDURDM/KOU5+8s0ICob+vr6YpeQOco8PGUeh3IPT5mHp8zLp2tOZS2LF6/rSV4yGpR5eMo8DuUenjIPT5lLqXTNqYiIiEiVyuI1p1k7XhERERGpYuo5LaK1tTV2CZmjzMNT5nEo9/CUeXjKvHy1dD1pGhqtLyIiIhJZodH6k8z8nSlbp7/WaP1saG9vj11C5ijz8JR5HMo9PGUenjIv37iUU62opWMRERERkTFO15yKiIiIVLGsXXOqntMimpqaYpeQOco8PGUeh3IPT5mHp8ylVBoQJSIiIhJZoQFRW5r5YSm7ThdpQFQ2LFq0KHYJmaPMw1PmcSj38JR5eMpcSqXGaRG9vb2xS8gcZR6eMo9DuYenzMNT5lIqDYgSERERqWJZ60nM2vGKiIiISBVLPSDKzOqAbuAxdz/CzCYBvwSmAsuB97v7syNsdwrwUcCBJcCH3P0lM3sf0A68AdjX3bvztpkPHATMc/cbzWwq8AjwKXf/brLOeUC3u/9kpHo1IEpERETGinUNiDo85YCon2ZwQNTJwAN586cB17n7NOC6ZH4tZrYd8ClgH3ffDagDjknevhd4D3DTsG12TV4eAJyY99YTwMlmtlEJNZetp6cn5McJyjwGZR6Hcg9PmYenzKVUqRqnZjYFOBy4MG/xLOCi5PVFwJEFNt8A2NTMNgA2A/oA3P0Bd186wvp1wBpyPa35fys8Sa4RfEKamiuls7Mz5McJyjwGZR6Hcg9PmYenzMtj6PGlhZwLfJZco3HQNu7eD5D83Hr4Ru7+GPAN4FGgH3jO3a9Z1we5+33kGrF/As4f9vY5wLzkEgMRERERqTFFR+ub2RHAE+7eY2YtpezczCaS62HdEVgJ/NrMjnP3n61rO3c/qcDyR8zsdmB2sc8eGBigvb19aH7OnDkALFy4cGhZS0sLLS0tdHR0MDAwAEBDQwNz586ls7OTnp4eurq6aG9vZ968efT19bF48eKh7VtbW2lubl7rc5qampg9ezaLFi1a6/YZ7e3t9PT0rPUXZFtbG42NjXR0dAwta25uprW1lQULFtDf3w9AfX098+bNo6uri66urrKPaVC1HtPw310tHBNU9++pq6uLzs7OmjomqP7f0+B/X2rpmKr997Rq1SqWLl1aU8dU7b+nwe95LR3TaP6eRpK1x5cWHRBlZl8FjgdeATYBtgB+A7wZaHH3fjNrALrcffqwbd8HHObuH0nmPwC8xd0/kbdOF3Bq/oCoEWqYClzp7rsl16ReQu5a1dtHe0DU0qVLmT59evEVpWKUeXjKPA7lHp4yD0+Zp1NoQNRkM29N2Tr9SVYGRLn76e4+xd2nkhvMdL27Hwdcwb+v/zwBuHyEzR8F3mJmm5mZATNYe1BVydz9QeB+4Ihy9pNWY2NjiI+RPMo8PGUeh3IPT5mHp8zLp2tO0zsHOMTMlgGHJPOYWaOZXQXg7reR6+W8k9xtpMYBC5P1jjKzFcD+wO/M7OoSPvtsYEoZtaeW3/0vYSjz8JR5HMo9PGUenjKXUpX0hCh37wK6ktdPk+sJHb5OHzAzb/5M4MwR1rsMuCzl5y4Hdsubv4fa+iNBRERE5DWM7F1zqgaeiIiIiFSNknpOs6i5uTl2CZmjzMNT5nEo9/CUeXjKvHxZ60lM/fjSsUaPLxUREZGxotBo/a3M/KiU5/V/kJXR+lm3YMGC2CVkjjIPT5nHodzDU+bhKfPyabS+rGXwprwSjjIPT5nHodzDU+bhKXMpla45FREREalSGq0vr1FfXx+7hMxR5uEp8ziUe3jKPDxlLqXSgCgRERGRyAoNiNrazN+bsuv0Ag2Iyoaurq7YJWSOMg9Pmceh3MNT5uEp8/JpQJSsRf+owlPm4SnzOJR7eMo8PGUupdKAKBEREZEqZmlHRNXIlZrqORURERGRqqEBUUX09fXR2NhYgYokLWUenjKPQ7mHp8zDU+bpFBoQtY2ZH52yK/G7azQgSkRERESkotQ4LWLhwoWxS8gcZR6eMo9DuYenzMNT5uXTaH0RERERkUg0Wl9ERESkiunxpbKWlpaW2CVkjjIPT5nHodzDU+bhKXMplUbri4iIiERWaLT+tmZ+bMquxG9qtH42dHR0xC4hc5R5eMo8DuUenjIPT5lLqXTNaREDAwOxS8gcZR6eMo9DuYenzMNT5uXLWk9i1o5XRERERKqYek6LaGhoiF1C5ijz8JR5HMo9PGUenjIvX9ZG62tAlIiIiEhk6xoQ9YGU57nna0BUNnR2dsYuIXOUeXjKPA7lHp4yD0+ZS6nUOC2ip6cndgmZo8zDU+ZxKPfwlHl4yrw8hh5fKiIiIiISjQZEiYiIiFSxrPUkakBUEQMDA9TX11egIklLmYenzONQ7uEp8/CUeTqFBkQ1mPmHUrZOv6oBUdnQ19cXu4TMUebhKfM4lHt4yjw8ZV4+SznVCjVOi1i8eHHsEjJHmYenzONQ7uEp8/CUefUwsx+Z2RNmdm/esnYze8zM7k6mmQW2PczMlprZQ2Z22mjWqcapiIiISJWq8Gj9nwCHjbD8W+6+ZzJd9ZoazOqA7wHvAt4ItJnZG0s8lNTUOBURERHJAHe/CXhmPTbdF3jI3R9299XAL4BZFS0ujxqnRbS2tsYuIXOUeXjKPA7lHp4yD0+Zl6+EntPJZtadN81J+RGfNLO/JKf9J47w/nbA3/PmVyTLRoUap0U0NzfHLiFzlHl4yjwO5R6eMg9PmQf1lLvvkzctTLHN+cDOwJ5AP9Axwjojjbcatds9qXFaRHt7e+wSMkeZh6fM41Du4Snz8JR5+UZztL67P+7ur7r7GuAH5E7hD7cC2D5vfgowardhUONUREREJKPMrCFv9ijg3hFWuwOYZmY7mtlGwDHAFaNVk54QJSIiIlKlBkfrV2RfZouBFnLXpq4AzgRazGxPcqfplwNzk3UbgQvdfaa7v2JmnwSuBuqAH7n7fRUq6zXUOC2iqakpdgmZo8zDU+ZxKPfwlHl4yrx6uHvbCIt/WGDdPmBm3vxVwGtuMzUa9PhSERERkcgKPb50OzP/fym7Ts/Q40uzYdGiRbFLyBxlHp4yj0O5h6fMw1PmUio1Tovo7e2NXULmKPPwlHkcyj08ZR6eMpdS6ZpTERERkSpm63ufqDFKPaciIiIiUjU0IEpEREQkskIDoqaY+Yl16fbxuVc1ICoTenp6YpeQOco8PGUeh3IPT5mHp8ylVGqcFtHZ2Rm7hMxR5uEp8ziUe3jKPDxlXr5xKadaUUvHIiIiIiJjnEbri4iIiFSxjA3WV89pMW1tIz3pS0aTMg9Pmceh3MNT5uEpcymVek6LaGxsjF1C5ijz8JR5HMo9PGUenjIvj5G9nsSsHW/JOjo6YpeQOco8PGUeh3IPT5mHp8ylVOo5FREREaliWetJzNrxioiIiEgVU89pEc3NzbFLyBxlHp4yj0O5h6fMw1Pm5cvaaH09vlREREQkskKPL93ezP875eNL/1uPL82GBQsWxC4hc5R5eMo8DuUenjIPT5mXZ3C0vp4QJUP6+/tjl5A5yjw8ZR6Hcg9PmYenzKVUapyKiIiISNXQgKgi6uvrY5eQOco8PGUeh3IPT5mHp8zLl7WeRA2IEhEREYms0ICoHcz8MykHRH1KA6KyoaurK3YJmaPMw1PmcSj38JR5eMq8fJZyqhVqnBahf1ThKfPwlHkcyj08ZR6eMpdS6ZpTERERkSo1eCupLMna8YqIiIhIFUvdODWzOjO7y8yuTOYnmdm1ZrYs+TlxhG2mm9ndedPzZvbp5L09zezWZHm3me2bt938ZNmByfxUM3MzOylvnfPM7IPrf+jpzJkzZ7Q/QoZR5uEp8ziUe3jKPDxlXr5xlm6qFaX0nJ4MPJA3fxpwnbtPA65L5tfi7kvdfU933xNoBl4ELkve/jrwxeS9LyTzmNmuyfsHACfm7e4J4GQz26iEmkVERERkDEnVODWzKcDhwIV5i2cBFyWvLwKOLLKbGcBf3f1vybwDWySvXwf0Ja/rgDXJ+/l/BzxJrhF8QpqaK2XhwoUhP05Q5jEo8ziUe3jKPDxlXr6sPb407YCoc4HPAvl30t3G3fsB3L3fzLYuso9jgMV5858Grjazb5DL9K3Jvu4zs82APwGfGbaPc4Dfm9mPUtYtIiIiImNI0capmR0BPOHuPWbWsj4fkpyKfzdwet7i/wec4u6Xmtn7gR8C7wRw95Neuxdw90fM7HZgdrHPHBgYoL29fWh+8JqX/L/gWlpaaGlpoaOjg4GBAQAaGhqYO3cunZ2d9PT00NXVRXt7O/PmzaOvr4/Fi//dvm5tbaW5uXmtz2lqamL27NksWrSI3t7eoeXt7e309PTQ2dk5tKytrY3GxkY6OjqGljU3N9Pa2sqCBQuGnkdcX1/PvHnz6OrqWuuWHOt7TIOq9ZiG/+5q4Zigun9PXV1ddHZ21tQxQfX/ngb/+1JLx1Ttv6dVq1axdOnSmjqmav89DX7Pa+mYRvP3NFyt3cM0jaJPiDKzrwLHA68Am5A7Ff8b4M1AS9Jr2gB0ufv0AvuYBZzo7ofmLXsOmODubmYGPOfuWxTYfipwpbvvllyTeglwE3C7u/9kpG0q9YSorq4uWlpayt6PpKfMw1PmcSj38JR5eMo8nUJPiJpq5p9PeZ57zisZeUKUu5/u7lPcfSq5U/PXu/txwBX8+/rPE4DL17GbNtY+pQ+5a0wPTF4fDCxLU7C7PwjcDxyRZv1y6R9UeMo8PGUeh3IPT5mHp8zLl7VrTss5lnOAQ8xsGXBIMo+ZNZrZVYMrJdePHkKutzXfx4AOM7sH+ApQyr0mzgamlFF7avnd/xKGMg9Pmceh3MNT5uEpcylVSU+IcvcuoCt5/TS5EfjD1+kDZubNvwhsOcJ6fyJ3e6k0n7sc2C1v/h4C/ZEweA2JhKPMw1PmcSj38JR5eMq8fLXUK5pG1o5XRERERKqYGqdFNDQ0xC4hc5R5eMo8DuUenjIPT5lLqYqO1h+rKjVaX0RERGS0FRqtv6OZn5nyIswPZWW0ftbl3yNNwlDm4SnzOJR7eMo8PGUupVLjtIj8G+hKGMo8PGUeh3IPT5mHp8zLp1tJiYiIiIhEUtKtpEREREQkHCN7PYkaEFXEwMAA9fX1FahI0lLm4SnzOJR7eMo8PGWeTqEBUTuZ+VkpuxKP14CobOjr64tdQuYo8/CUeRzKPTxlHp4yL5PBuJRTrVDjtIjFixfHLiFzlHl4yjwO5R6eMg9PmUupdM2piIiISBWroU7RVNRzKiIiIiJVQz2nRbS2tsYuIXOUeXjKPA7lHp4yD0+Zl0ej9WuIHl8qIiIiY0Wh0fo7jzP/SsquxGNe1mj9TGhvb49dQuYo8/CUeRzKPTxlHp4yL5+eECUiIiIiEomuORURERGpYlnrScza8ZasqakpdgmZo8zDU+ZxKPfwlHl4ylxKpQFRIiIiIpGta0DU11Oe5/4vDYjKhkWLFsUuIXOUeXjKPA7lHp4yD0+Zl8dKmGqFGqdF9Pb2xi4hc5R5eMo8DuUenjIPT5lLqTQgSkRERKSKZa0nMWvHKyIiIiJVTAOiRERERCIrNCBql3Hm39ww3T5mrdaAqEzo6emJXULmKPPwlHkcyj08ZR6eMq8eZvYjM3vCzO7NWzbfzB40s7+Y2WVmNqHAtsvNbImZ3W1mo9r7p8ZpEZ2dnbFLyBxlHp4yj0O5h6fMw1Pm5TEq+vjSnwCHDVt2LbCbu78J6AVOX8f2B7n7nqPdO6vGqYiIiEgGuPtNwDPDll3j7q8ks7cCU4IXNowapyIiIiJVrIT7nE42s+68aU6JH/Vh4PcF3nPgGjPrWY/9lkS3kiqira0tdgmZo8zDU+ZxKPfwlHl4yjyop9b3lLuZfR54Bfh5gVXe5u59ZrY1cK2ZPZj0xFacek6LaGxsjF1C5ijz8JR5HMo9PGUenjIvXwWvOR2RmZ0AHAEc6wVu4+TufcnPJ4DLgH3L+Mh1UuO0iI6OjtglZI4yD0+Zx6Hcw1Pm4Snz6mZmhwH/A7zb3V8ssM7mZlY/+Bo4FLh3pHUrQY1TERERkSpVydH6ZrYYuAWYbmYrzOwjwHlAPblT9Xeb2QXJuo1mdlWy6TbAn8zsHuB24Hfu/odKHeNwuuZUREREJAPcfaQLgH9YYN0+YGby+mFgj1EsbS1qnBbR3Nwcu4TMUebhKfM4lHt4yjw8ZV6+cRa7grD0+FIRERGRyAo9vrRpnPn3Nkq3j0NX6fGlmbBgwYLYJWSOMg9Pmceh3MNT5uEpcymVTusX0d/fH7uEzFHm4SnzOJR7eMo8PGVensEBUVmSteMVERERkSqmntMi6uvrY5eQOco8PGUeh3IPT5mHp8zLl7HxUBoQJSIiIhJboQFR08eZn59yQNQMDYjKhq6urtglZI4yD0+Zx6Hcw1Pm4Snz8o3240urTS0dy6jQP6rwlHl4yjwO5R6eMg9PmUupdM2piIiISJXSaH0RERERkYg0IKqIvr4+GhsbK1CRpKXMw1PmcSj38JR5eMo8nUIDonYdZ37hxun28Y6XNCBKRERERKSi1DgtYuHChbFLyBxlHp4yj0O5h6fMw1Pm5dNofRERERGRSDRaX0RERKRKGdl7QpR6TotoaWmJXULmKPPwlHkcyj08ZR6eMpdSabS+iIiISGSFRuu/YZz5T1KO1n+LRutnQ0dHR+wSMkeZh6fM41Du4Snz8JS5lEqN0yIGBgZil5A5yjw8ZR6Hcg9PmYenzKVUGhAlIiIiUsXGZWxElHpOi2hoaIhdQuYo8/CUeRzKPTxlHp4yl1JpQJSIiIhIZIUGRL1xnPlPN0m3j33+pQFRmdDZ2Rm7hMxR5uEp8ziUe3jKPDxlLqVS47SInp6e2CVkjjIPT5nHodzDU+bhKfPy6fGlIiIiIiKRaLS+iIiISBXL2GB9DYgqZmBggPr6+gpUJGkp8/CUeRzKPTxlHp4yT2ddA6IWpRwQtZcGRGVDX19f7BIyR5mHp8zjUO7hKfPwlHl5zHL3OU0z1Qo1TotYvHhx7BIyR5mHp8zjUO7hKfPwlLmUStecioiIiFSxrPUkpj5eM6szs7vM7MpkfpKZXWtmy5KfE0fYZrqZ3Z03PW9mn07eazezx/Lem5m33Xwz6zazA5P5qWbmZnZS3jrnmdkH1//QRURERKTalNIYPxl4IG/+NOA6d58GXJfMr8Xdl7r7nu6+J9AMvAhclrfKtwbfd/erAMxs1+S9A4AT89Z9AjjZzDYqoeaytba2hvw4QZnHoMzjUO7hKfPwlHl5DF1zOiIzmwIcDlyYt3gWcFHy+iLgyCK7mQH81d3/VmS9OmAN4Kx994QnyTWCT0hTc6U0NzeH/DhBmcegzOOoptyXL19Oe3s7P/jBD1izZk3sckZNNWWeFcpcSpW25/Rc4LPkGo2DtnH3foDk59ZF9nEMMPyq6E+a2V/M7EeDlwW4+33AZsCfgPOHrX8OMM/M6lLWXbb29vZQHyUJZR6eMo+jnNw/csz7mTnROGFrY78JI59Q2syMiWbsvIGxz6aFu1Xcna9//et87nOfY4899uAHP/jBetdV7fRdD0+Zly9rT4gqOiDKzI4AnnD3HjNrWZ8PSU7Fvxs4PW/x+cCXyPWQfgnoAD4M4O4nDd9HsvwRM7sdmF3sMwcGBtb6BzFnzhwAFi5cOLSspaWFlpYWOjo6GBgYAKChoYG5c+fS2dlJT08PXV1dtLe3M2/ePPr6+tYaddja2kpzc/Nan9PU1MTs2bNZtGgRvb29Q8vb29vp6elZ6xnDbW1tNDY20tHRMbSsubmZ1tZWFixYQH9/PwD19fXMmzePrq4uurq6yj6mQdV6TMN/d7VwTFDdv6euri46Oztr6pig+n9Pg/99WZ9juvG3v+boybn/Id334susXr2aP//5z0PHdPYXv8iuwE5A16u529HMnDmTz372s685pq222oqtt96aq6++mjvuuIMbb7yR/v7+mvw9rVq1iqVLl9bUMVX772nwe15LxzSavych9xfzuibgq8AKYDnwD3LXjf4MWAo0JOs0AEvXsY9ZwDXreH8qcG+a94FdgXuB7wMfLLRNc3OzV8KZZ55Zkf1Ieso8PGUeRzm5N2+OL90Tf3E//F0TeM37k8CPA/+I4e8Afx34zTffXHB/8+fP97PPPttPPPFEv//++9e7rmqn73p4yjwdoNtHaM/8xzj8gc3TTYX2EXICpgCnApcDdwA3JW22w4FxafZRtOfU3U8n6fFMek5PdffjzGw+ues/z0l+Xr6O3bQx7JS+mTV4clkAcFTS4CzK3R80s/uBI4Db02xTjqamptH+CBlGmYenzOMoJ/cf/fkeZr91DzYdB7sc9t7XvL/KjD+7M9WhF9hio3G89a1vLbi/U089lYGBATbddFM22KB27zKo73p4yrx8Y2Wsk5n9GNgOuBL4GrnB7JsATcBhwOfN7DR3v2md+/ESHl+a1zg9wsy2BH4F7AA8CrzP3Z8xs0bgQnefmWyzGfB3YCd3fy5vXz8F9iR3Wn85MDevsTr8c6cCV7r7bsn8HsBdwIfd/ScjbVOpx5eKiIxVe++9N3fddRfnn38+H//4x2OXIyLrUOjxpbvVmV+6abp97PrPuI8vNbPd3L1gZ2NymecO7v7QuvZT0vWz7t7l7kckr5929xnuPi35+UyyvG+wYZrMv+juW+Y3TJPlx7v77u7+Jnd/d6GGabLu8sGGaTJ/j7uPK9QwraRFixaN9kfIMMo8PGUex2jnfuedd+Luapjm0Xc9PGVenrF0K6l1NUyT91cXa5hCbQ3uGhX5F1hLGMo8PGUeh3IPT5mHp8yzx8yOSB7c9EzyAKYBM3s+7fa1e2GRiIiISA0Ygz2J5wLvAZZ4KdePJsbg8YqIiIhIFfs7ubssldwwhRIHRI0lGhAlIiIiY0WhAVG715lfsXm6few0EHdA1CAzezO5e9jfCKwaXO7u30yzvXpOi8i/ga6EoczDU+ZxKPfwlHl4yjyTziZ3X/xNgPq8KRU1TovIf7qEhKHMw1PmcSj38JR5eMq8PMaYfHzpJHd/j7uf6e5fHJzSblxlxyIiIiIiY9wfzezQ9d1YjVMRERGRKmaWbqoiJwJ/MLN/6VZSo6CtrS12CZmjzMNT5nEo9/CUeXjKPHvc/TXXl5qlbz6r57SIxsbG2CVkjjIPT5nHodzDU+bhKfPyjbVrTs3srGHz44Cfpd2+mo6lKnV0dMQuIXOUeXjKPA7lHp4yD0+ZZ9IOZnY6gJltDPwWWJZ2YzVORURERKqUGYxLOVWRDwG7Jw3UTuAGd29Pu7GuORURERGRspnZ3nmz3wYWADcDN5rZ3u5+Z5r9qHFaRHNzc+wSMkeZh6fM41Du4Snz8JR5pgy/huNZ4I3JcgcOTrMTPb5UREREJLJCjy/dYwPzq1M+W6lhZXU8vrRcuua0iAULFsQuIarnnnuO5557LuhnZj3zGJR5HMo9PGUenjLPDjM7bl23jDKznc3s7cX2o9P6RfT398cuIYqXXnqJc889l2984xu89NJLTJo0id13332tadddd2WjjTaq+GdnNfOYlHkcyj08ZR6eMi9fld1gf122BO42sx6gB3gS2ATYBTgQeAo4rdhO1HMqa3F3fvGLX7Drrrtyxx13cOutt/L8889zww038LGPfYzNN9+cyy+/nKOPPprXve517L777sybN4+bbrqJV199NXb5mfLCCy/w8ssvxy5DREQEAHf/NrA3sBjYCpiRzD8GHO/u73X3oreUUs9pEfX1KS/0qAG33norp5xyCqtXr+aiiy7iwAMPHHpv5513Zuedd+bII48cWvbSSy+xZMkSfve733HyySezYsUKjjjiCGbNmsWhhx7KZptttl51ZCnz9XXKKadwySWXsPnmm/Pzn/+87AEHyjwO5R6eMg9PmZfHqLrbRK2Tu78KXJtM60UDooS//e1vnHbaafzf//0fX/nKVzjuuOMYN670TvXly5dzxRVXcPnll3PHHXfQ0tLCrFmzOPjgg1m1ahXPPPMMzz77LM8888zQlD//wgsvpPocM2P8+PG87nWv43Wvex0TJkwYej18fsKECTQ2Nq7X8VSrV199lV122YXly5cD8J73vIdLL700blEio+A973kPkPtDuLOzk7q6usgViYyeQgOi9tzA/NrXpdvH1s+se0CUmf0IOAJ4wt13S5ZNAn4JTAWWA+9392dH2PYwcreHqgMudPdz0lVVOjVOi+jq6qKlpaX8gqrQSy+9xPz58zn33HP51Kc+xamnnsrmm29ekX0/++yzXHXVVVx++eXcfPPNjB8/nkmTJjFp0iQmTpw44uvx48djZtx1113stddeBfe9Zs0aXnjhBZ577jlWrlw5NGhrpNdPP/00O+20E7/61a/YfvvtK3Js1WDPPffknnvuYcMNN+Qzn/kMZ599dln7q+XveTVT7oWde+65jBs3jk996lNceumlXH/99Xzve98re7/KPDxlns66GqfXTUi3j8lPF22cHgC8AFyc1zj9OvCMu59jZqcBE939f4ZtVwf0AocAK4A7gDZ3vz9dZaXRaf0iavUf1dVXX80nP/lJdtttN+68805e//rXV3T/EydO5Nhjj+XYY48tedvrr7+eAw44oCJ1rFmzhm984xvsu+++XHTRRRx66KEV2W9sl19+OWeccQbTpk3j85//fNn7q9XvebVT7oU9+eST7L777gBsvfXWPPvsazpy1osyD0+ZVw93v8nMpg5bPAtoSV5fBHQB/zNsnX2Bh9z9YQAz+0WynRqnUr4VK1Zwyimn0NPTw3e/+10OP/zw2CWNqnHjxvHZz36W/fbbj9mzZzNnzhz+93//d8yfHnz961/PxRdfHLsMkVFz1llnceihh3L11VfzyCOP8Pvf/z52SSJxGFj6K9Mmm1n+aeOF7r6wyDbbuHs/gLv3m9nWI6yzHfD3vPkVwH6FdmhmGwPvJXepwFBb093PKlILoMZpZrz88suce+65fO1rX+PEE0/k4osvZtNNN41dVjAHHngg3d3dtLW18ec//5mf//znTJ48OXZZIlJAXV0d1113XewyRMaap0bpJvwjDcla13WhlwPPkbud1KpSP0yN0yLmzJlT9j6ee+45li1bxiOPPDLiQKDhr1etWlVwsM/wZePHj+eFF17g2Wef5dlnn2XlypVDr4fPz5gxg1tuuYVp06ZVIJnRU4nMR9LQ0MAf//hHzjjjDPbee28uuugiDjrooFH5rLFmtDKXdVPu4Snz8JR5eQwY5TG9j5tZQ9Jr2gA8McI6K4D8gRtTgL517HOKux+2vgWpcVoh//znP3nooYdYtmwZy5Yto7e3d+jniy++yLRp09hxxx2ZPHkykyZNYsstt2TatGmvGRQ0adIkNtxwQ55//vnXDPLJn//73//Ovffey8DAAPX19UyYMIGJEyfyhje8gYkTJzJx4sShZYPTxhtvHDum6DbYYAO++tWv8ta3vpWPfvSjbLXVVnz605/mve99LxtuuGHs8kREREK7AjgBOCf5efkI69wBTDOzHcnds/QYYPY69vlnM9vd3ZesV0XuXpNTc3OzV8KZZ575mmVr1qzxBx54wC+88EL/4Ac/6NOmTfNNNtnE3/jGN/qsWbP8M5/5jC9cuNC7urr8scce8zVr1lSklqwYKfPR8Morr/hvf/tbb2lp8SlTpvhXv/pVf/rpp4N8drUJlbm7+1VXXeVvm47Pfju+944E+9xqFDJ3yVHm4SnzdIBuH6E9s+eG+MqGdFOhfQxO5G6O3w+8TK439CPknup0HbAs+TkpWbcRuCpv25nkRuz/Ffh8gf0vAf5CbqDUy8DSZH4J8Jd11ZY/qec0hVWrVtHd3c3NN988NI0fP563v/3tvO1tb+O///u/eeMb3zjmB9lkTV1dHbNmzWLWrFncfffdfPvb32aXXXbh6KOP5lOf+hRveMMbYpdYk06dO5MrToOdtx3HF36xhra2NhYvXhy7LBGRmufubQXemjHCun3kGqSD81cBVxX5iCPWv7p/y2Tj9IUXXuChhx7iH//4x1rXZ450zeYjjzzC/Pnz2XXXXXnb297Gsccey/e//32222672IchFbTnnnvy4x//mMcff5wLLriAgw46iG233ZY3v/nNQ9Nuu+2mU/8V8tLq3M9Vq2H8VuPjFiMiUsUCXHNaMe7+NwAz+6m7H5//npn9FDh+xA2HqdnGqbtz3333jXgN6MqVK9l5551pbGxc67rMrbfemunTp691vebSpUuZNWtWxW5OL8XFvB/eNttsw5lnnsnpp5/O3Xffze23387NN9/Mueeey9/+9jf22GOPtRqs06ZNq4mnT4XM/Ke/7eGjbc00TlrDX/vh7uU/CPbZ1Ub3fgxPmYenzDPpP/Jnkpv4p37Ods0+IWrcuHHe1NTEtGnTmDZtGvmvp0yZUhMNCgnr+eef58477+SOO+7gjjvu4Pbbb2flypU0NTWx0047DU077rgjO+20E9tvvz0bbFCzf/+JiEgFFXpC1N4bm9+0bbp91D+67idEjTYzOx34HLAp8CL/vgXVanL3XD091X5qtXHa3NzsPT09Ze+no6ODefPmVaAiSWssZf7UU0+xbNkyHn74YR5++GEeeeSRodePP/4422233VCj9cgjj2TmzJnFdxrBWMq8lij38JR5eMo8nVponA4ys6+mbYiOpGa7dcxGul9s6QYGBiqyH0lvLGU+efJkJk+ezP777/+a91atWsWjjz7KI488wkMPPcRHP/pR5s+fv16PdB1tYynzWqLcw1Pm4SnzTPqcmb0HeDu5m/X/n7v/Nu3GNds4FYlt4403HrqU5NBDD6WlpYVDDjmEV199lQ984AOxyxMRkTGihMeXVovvAbuQu3UVwMfN7BB3PzHNxmqcFtHQ0BC7hMyp1czf+MY3ct111/HOd76TV199lQ996EOxSxpSq5lXO+UenjIPT5ln0oHAbsn9WzGzi8jd6zSVmr3mdJ999vHu7u7YZYi8Rm9vLzNmzOALX/gCH/vYx2KXIyIiVaDgNaebmP9pSrp9bP7Xqrnm9DfAKXm3lno9cM467rO6lrHXURxYZ2dn7BIyp9Yzb2pq4oYbbuBLX/oSF1xwQexygNrPvFop9/CUeXjKPJO2BB4wsy4z6yL3xKitzOwKM7ui2MZqnBZRiRH/UposZL7LLrvQ1dXFWWedxU9/+tPY5WQi82qk3MNT5uEp8/JZXbqpinwBeBdwZjLNBL4EdCTTOqlxKhLJTjvtxP7778+tt94auxQREZGKcfcbgeXAhsnr24E73f3GZH6dNCBKJJKbb76ZW265hb/85S+xSxERkSplVnW9okWZ2ceAOcAkYGdgCnABMCPV9hoQtW4DAwPU19dXoCJJKwuZ/+tf/2KPPfbga1/7GkcddVTscjKReTVS7uEp8/CUeTqFBkQ1b2p+847p9rHpA1UzIOpuYF/gNnffK1m2xN13T7O9TusX0dfXF7uEzMlC5v/7v/9Lc3NzVTRMIRuZVyPlHp4yD0+Zl28MXnO6yt1XD86Y2QbkbsafihqnRSxevLj4SlJRtZ75n//8ZxYtWsR3v/vd2KUMqfXMq5VyD0+Zh6fMM+lGM/scsKmZHQL8Gkh92wY1TkUCev755znhhBP43ve+x+TJk2OXIyIi1c6AupRT9TgNeJLcjffnAlcB/5t2Yw2IEgnE3fnIRz7CjBkzeM973hO7HBERkVHh7mvM7LfAb939yVK3V89pEa2trbFLyJxazfy8887j4Ycf5txzz41dymvUaubVTrmHp8zDU+ZlsrFzzanltJvZU8CDwFIze9LMvlDSfjRaX2T03XbbbbS2tnLrrbey0047xS5HRESqTMHR+pub37Jrun1sfGfc0fpmdgq5G+7PcfdHkmU7AecDf3D3b6XZj3pOi2hvb49dQubUWuZPP/00Rx99NAsXLqzahuloZr5w4UJmzJjBO9/5Tl544YVR+5yxqNa+62OBMg9PmZdvrPScAh8A2gYbpgDu/jBwXPJeKrrmVGQUrVmzhg984AO8973v5cgjj4xdTnCvvvoqnZ2dXH311fT29nLUUUdx7bXXxi5LRERGx4bu/tTwhe7+pJltmHYn6jkVGUUXXXQRzzzzDOecc07sUqL417/+xXbbbccGG2zAtGnTWLNmTeySRERk9Kxez/fWop7TIpqammKXkDm1lPktt9zC8ccfz4Ybpv6DMYrRynz8+PGsWLGCj33sY/T19XHCCSeMyueMVbX0XR8rlHl4yrxMg7eSGhv2MLPnR1huwCZpd6IBUSKj6MADD+QLX/gCM2akepxwzVq9ejUbbbRR7DJERKpWwQFR481vTfXQT9jo1up4fGm5dFq/iEWLFsUuIXNqKfPe3l6mT58eu4yiRjtzNUxHVkvf9bFCmYenzMs3hgZEVYQap0X09vbGLiFzaiXz559/noGBAbbbbrvYpRRVK5mPNco9PGUenjKXUumaU5FRsnTpUpqamjCz2KWIiMhYNbauOa0I9ZyKjJKlS5eOiVP6IiIi1UQDokRGyRlnnEFdXZ1uQC0iIkUVGhC1zxbmt6Uc4rTBDRoQlQk9PT2xS8icWsl8LPWc1krmY41yD0+Zh6fMpVRqnBbR2dkZu4TMqZXMx1LjtFYyH2uUe3jKPDxlXgF1KacaocapyChYs2YNy5Yt082nRURESqTR+iKj4JlnnmGTTTZh/PjxsUsREZGxzMhcV2LGDrd0bW1tsUvInFrI/PHHH2ebbbaJXUZqtZD5WKTcw1Pm4SlzKZV6TotobGyMXULm1ELmY61xWguZj0XKPTxlHp4yL18tPf0pDfWcFtHR0RG7hMyphczHWuO0FjIfi5R7eMo8PGUupVLPqcgoGGuNUxERqVJ6QlRhZlZnZneZ2ZXJ/CQzu9bMliU/J46wzXQzuztvet7MPp28N9/MHjSzv5jZZWY2IW+7+WbWbWYHJvNTzczN7KS8dc4zsw+u95GLjCI1TkVERNZPKaf1TwYeyJs/DbjO3acB1yXza3H3pe6+p7vvCTQDLwKXJW9fC+zm7m8CeoHTAcxs1+T9A4AT83b3BHCymW1UQs1la25uDvlxQm1k/sQTT4ypxmktZD4WKffwlHl4ylxKlapxamZTgMOBC/MWzwIuSl5fBBxZZDczgL+6+98A3P0ad38lee9WYEryug5YAzi5zuxBT5JrBJ+QpuZKaW1tDflxQm1k/vjjj7P11lvHLiO1Wsh8LFLu4Snz8JR5BYxLOdWItIdyLvBZco3GQdu4ez9A8rPY/4mPARYXeO/DwO+Tfd0HbAb8CTh/2HrnAPPMwo1bW7BgQaiPkkQtZD7WTuvXQuZjkXIPT5mHp8ylVEUHRJnZEcAT7t5jZi3r8yHJqfh3k5y6H/be54FXgJ8PLnP3k4avlyx/xMxuB2YX+8yBgQHa29uH5ufMmQPAwoULh5a1tLTQ0tJCR0cHAwMDADQ0NDB37lw6Ozvp6emhq6uL/v5+5s2bR19fH4sX/7t93draSnNz81qf09TUxOzZs1m0aBG9vb1Dy9vb2+np6VnrMW5tbW00NjauNZKxubmZ1tZWFixYQH9/PwD19fXMmzePrq4uurq6yj6mQdV6TL29vWt9/lg8pt7eXhYvXszvf//7MfF76urqorGxMfPfvdDHtHjx4qG6auWYqv33tGrVKpYuXVpTx1Ttv6fB/4/W0jGN5u/pNTI4IAp3X+cEfBVYASwH/kHuutGfAUuBhmSdBmDpOvYxC7hmhOUnALcAmxWpYSpwb/J6V+Be4PvABwtt09zc7JVw5plnVmQ/kt5Yz3zNmjW+8cYb+4svvhi7lNTGeuZjlXIPT5mHp8zTAbp9pPbMBPzVo9JNhfYx1qaip/Xd/XR3n+LuU8mdmr/e3Y8DruDf13+eAFy+jt20MeyUvpkdBvwP8G53f7FYHXn1PAjcDxyRdpty1NfXh/gYyTPWM1+xYgXjx49n0003jV1KamM987FKuYenzMNT5mWy3E3400y1wnKN9ZQr507rn+ruR5jZlsCvgB2AR4H3ufszZtYIXOjuM5NtNgP+Duzk7s/l7eshYGPg6WTRre7+8QKfOxW40t13S+b3AO4CPuzuPxlpm3322ce7u7tTH5tIpZx33nncfvvtXHzxxbFLERGRMcLMetx9n+HL95lkfseMdPsYdwkj7mOsKWlsl7t3ufsRyeun3X2Gu09Lfj6TLO8bbJgm8y+6+5b5DdNk+S7uvr0nt5oq1DBN1l0+2DBN5u9x93GFGqaVlH+9iYQx1jO/7LLLOOqoo2KXUZKxnvlYpdzDU+bhKfMK0Gh9yad/VOGN5cyffvpp7rjjDv7zP/8zdiklGcuZj2XKPTxlHp4yl1Lp8aUiFXTllVcyY8YMNttss9iliIhILcjgaH31nIpU0Fg8pS8iIlJNShoQNZZUakBUX18fjY2NFahI0hqrmf/zn/+koaGB5cuXM2nSpNjllGSsZj7WKffwlHl4yjydggOitjS/413p9jHu5xkcECUihV199dXst99+Y65hKiIiUk3UOC0i/0kQEsZYzfy3v/0tRx55ZOwy1stYzXysU+7hKfPwlHkFaLS+iJTq1Vdf5fe//z2tra2xSxERERnTNFpfpAJuv/12tt12W3bYYYfYpYiISC3RaH0ZrqWlJXYJmTMWM//d737H4YcfHruM9TYWM68Fyj08ZR6eMpdSabS+SAXstddefOc73+Ed73hH7FJERGQMKjhaf7L5HSmvGBv3E43Wz4SOjo7YJWTOWMv8scce49FHH2X//fePXcp6G2uZ1wrlHp4yD0+ZV4AGREm+gYGB2CVkzljL/KqrruLQQw9lgw3G7iXcYy3zWqHcw1Pm4SlzKZUapyJlGuvXm4qISBUz1HMqa2toaIhdQuaMpcxXrVrFDTfcwGGHHRa7lLKMpcxriXIPT5mHp8yrh5lNN7O786bnzezTw9ZpMbPn8tb5QvA6NSBKZP1997vf5Te/+Q033HBD7FJERGQMKzggaivz7vem3MeC9AOizKwOeAzYz93/lre8BTjV3Y9I96mVp57TIjo7O2OXkDljJfM77riDs846ix/84AexSynbWMm81ij38JR5eMq8as0A/prfMK0WapwW0dPTE7uEzBkLmT/zzDO8//3v54ILLmCXXXaJXU7ZxkLmtUi5h6fMw1PmZSrtmtPJZtadN81Zx56PARYXeG9/M7vHzH5vZv9RmQNJb+wOLxaJZM2aNZxwwgnMmjWL97435bkWERGR0fdUmtP6ZrYR8G7g9BHevhN4vbu/YGYzgd8C0ypaZRFqnIqU6Bvf+AZPPfUUl156aexSREQkCyp/nvtdwJ3u/vjwN9z9+bzXV5nZ981ssrs/VfEqCtCAqCIGBgaor6+vQEWSVjVnftNNN/H+97+f22+/nR122CF2ORVTzZnXMuUenjIPT5mnU3BA1Nbm3e9PuY/vpRsQZWa/AK529x+P8N62wOPu7ma2L3AJuZ7UYA1GXXNaRF9fX+wSMqdaM3/88ceZPXs2P/7xj2uqYQrVm3mtU+7hKfPwlHmZKnyfUzPbDDgE+E3eso+b2ceT2f8C7jWze4DvAMeEbJiCGqdFLV5c6FphGS3VmHl/fz8zZsxg7ty5vOtd74pdTsVVY+ZZoNzDU+bhKfPq4u4vuvuW7v5c3rIL3P2C5PV57v4f7r6Hu7/F3f8cukY1TkWKePTRRznwwANpa2vjjDPOiF2OiIhkjZ4QJSKD/vrXv3LAAQfwiU98gs9//vOxyxEREal5Gq1fRGtra+wSMqdaMr///vs59NBD+cIXvsCcOeu6VdzYVy2ZZ41yD0+Zh6fMy2RAXewiwtJofZER3H333bzrXe9i/vz5HHfccbHLERGRGldwtP625t3HptzHN9M/vrSa6bR+Ee3t7bFLyJzRynz16tV0d3fzxz/+kV//+tcsXLiQr33ta5x++ul8/OMf5+ijj+Y///M/2XfffTn44IM577zzMtMw1fc8DuUenjIPT5lLqXRaXzLB3Xn/+9/P/fffz/bbb8/EiROZMGECEydOZOLEieywww5rLdt+++1pbGyMXbaIiEjmuhLVOJVM6OjooL+/n3vvvZeNNtoodjkiIiJSgBqnRTQ1NcUuIXMqnfnNN9/M/Pnzuf3229UwLUDf8ziUe3jKPDxlXgEZ6znVgCipaU8++SR77703F1xwAYcffnjsckREREa0zgFRJ6Tcx9c1ICoTFi1aFLuEzKlU5q+++irHHnssxx9/vBqmReh7HodyD0+Zh6fMy1Thx5eOBTV0KKOjt7c3dgmZU6nMv/zlL7N69WrOOuusiuyvlul7HodyD0+Zh6fMpVS65lRq0pIlS/j+97/P3XffzQYb6GsuIiJjWMa6Emv2/9qrV6/m+eefZ4MNNmDlypU8++yzQ9Pw+WeffZYXXniB8ePHM2HChLWmBx54gBtuuGGtZVtssQV1dRl7XMMY85WvfIV58+bR0NAQuxQREREpQc0OiNpoo41844035uWXXx66l+Xwe1vmz9fX1/PPf/6TlStXFp3++c9/MmXKFHbccUd22mmnoZ+DrydPnoyZxY4gs5YuXcrb3/52Hn74Yerr62OXIyIiUlTBAVGN5t0fSbmPL9fGgKia7Tl905veRCVG6/f09NDc3LzWstWrV/Poo4/y8MMP8/DDD/PII49w6aWXDr1++eWX2XHHHdl5551paWlh1qxZTJ06texasmKkzEtxzjnncNJJJ6lhWoJyM5f1o9zDU+bhKXMpVc02Tiuls7PzNf+oNtpoI3bZZRd22WWXEbdZuXIljzzyCL29vVxzzTWcffbZNDQ0MGvWLGbNmsXee++tntV1GCnztJYvX84VV1zBQw89VOGqals5mcv6U+7hKfPwlHkF6JpTKdeECRPYa6+92GuvvTj66KN59dVXueWWW7j88stpa2vjX//6F+9+97uZNWsWLS0tujF8BX3ta19j7ty5TJw4MXYpIiIish4y1haPo66ujre//e3Mnz+fpUuXcs0117D99ttz5pln0tjYyNlnn80LL7wQu8wx77HHHuOXv/wlp5xySuxSREREKkf3OZV8bW1tFd2fmfGGN7yB0047jVtuuYVbbrmFe++9l2nTpvGd73yHVatWVfTzxqL1ydzdaW9v50Mf+hBbbbXVKFRV2yr9PZd0lHt4yjw8ZS6lUuO0iMbGxlHd/7Rp01i8eDG///3vueaaa5g+fTo/+clPeOWVV0b1c6tZqZm//PLLzJkzhzvvvJPTTz99lKqqbaP9PZeRKffwlHl4yrxMekKUDNfR0RHkc/bcc0+uvPJKfvazn/GjH/2I3XffnUsvvZRavdXXupSS+cDAAK2trfT19XHjjTcyefLkUaysdoX6nsvalHt4yjw8ZS6lUuO0yrz97W/nxhtv5Fvf+hZnn302+++/P/fee2/ssqpSX18fBxxwADvssAOXX34548ePj12SiIiIlEmN0ypkZhx22GF0d3fz4Q9/mIMOOogvfelLvPzyy7FLqxr33Xcf+++/P+973/tYsGCBHlEqIiK1S6f1JV/Me7ONGzdu6FrKW265hTe/+c3cdddd0eoJZV2Zuzt//OMfOfjgg/nKV77C5z73Od0ztgJ0D8I4lHt4yjw8ZS6lqtnHl+6zzz5eiSdEVQt352c/+xmnnnoqH/vYxzjjjDPYeOONY5c16l5++WXuvvtubr755qGprq6Oiy++mIMOOih2eSIiIhVR8PGlU8y7T0y5j8/VxuNL1XNaxIIFC2KXAORO9R9//PHcc8893H///ey1117cdtttscuquGeffZZPfepTnHHGGRx88MFMmjSJD3/4wzz44IPMmjWLm2++mUcffVQN0wqrlu951ij38JR5eMpcSqUL9Yro7++PXcJatt12Wy699FIuueQSjjzySA4++GDOOussdt5559ilpfbPf/6TZcuWsWzZMnp7e9f6+dJLL7Hlllty7LHHcuqpp7L//vvraU8BVNv3PCuUe3jKPDxlXgEZ60rM2OHWBjPjfe97H729vey6667st99+fPzjH+exxx6LXdqIHn30Ub71rW/xzne+k+22246tttqK448/nsWLFzMwMMA73vEOzjnnHJYsWcLzzz/PBz/4Qc4++2xmzpyphqmIiEjGqOe0iPr6+tglFFRfX88ZZ5zBJz7xCb72ta/xpje9iQ9/+MOcdtppbLnlllFre/jhh4d6eB9++GGOPPJIPv3pT/OmN72JKVOmMG5c4b+LqjnzWqXM41Du4Snz8JR5BWSsK1EDomrIY489xpe//GV+/etfc/LJJ/PpT3862H8U3J2HHnqISy65hEsuuYQVK1Zw1FFH8V//9V+0tLToVk8iIiLrsM4BUSen3Mdna2NAlFoMRXR1ddHS0hK7jFS22247zj//fObNm0d7ezvbbLMNTU1N7L777mtN2223XcHbL61evZqVK1fy7LPPvmZ65plneOaZZwq+3nLLLTnqqKPo6OjgHe94B3V1det1HGMp81qhzONQ7uEp8/CUeZkGH1+aIWqcFjEW/1Htsssu/OxnP+PFF1/k/vvvZ8mSJSxZsoRrr72WJUuWsGrVKnbbbTcmTZr0mgbo6tWrmTBhAhMnTlxrmjRpEhMnTmT77bdnjz32GFo2OE2cOJFNNtmkIvWPxczHOmUeh3IPT5mHp8ylVGqc1rDNNtuMffbZh332WbuH/8knnxwafDS8Ebr55pvrpvYiIiLVRD2nUuu22morDj744NhliIiIiLyGBkQV0dfXR2NjYwUqkrSUeXjKPA7lHp4yD0+Zp1NwQNT25t3zUu7jlNoYEJWxjmIRERERqWZqnBaxcOHC2CVkjjIPT5nHodzDU+bhKfMyDY7WTzPViBo6FBEREREZ69Q4FREREZGqodH6RejebOEp8/CUeRzKPTxlHp4yr4CMdSVqtL6IiIhIZAVH6+9g3v3ZlPs4SaP1M6GjoyN2CZmjzMNT5nEo9/CUeXjKvEwaEFWYmdWZ2V1mdmUyP8nMrjWzZcnPiQW2m2Bml5jZg2b2gJntnyzfw8xuMbMlZtZpZlvkbTPfzLrN7MBkfqqZuZmdlLfOeWb2wfU87tQGBgZG+yNkGGUenjKPQ7mHp8zDU+ZSqlLa2ScDD+TNnwZc5+7TgOuS+ZF8G/iDu+8K7JG3jwuB09x9d+Ay4DMAZrZr8v4BwIl5+3kCONnMNiqhZhEREZGxTT2nr2VmU4DDyTUoB80CLkpeXwQcOcJ2W5BrZP4QwN1Xu/vK5O3pwE3J62uB9yav64A1gJPrzB70JLlG8Alpaq6UhoaGkB8nKPMYlHkcyj08ZR6eMpdSpW1nnwt8llyjcdA27t4PkPzceoTtdiLXqPxxcknAhWa2efLevcC7k9fvA7ZP9nUfsBnwJ+D8Yfs7B5hnZnUp6y7b3LlzQ32UJJR5eMo8DuUenjIPT5lXQMZ6ToveSsrMjgCecPceM2tZj/3vDZzk7reZ2bfJnf4/A/gw8B0z+wJwBbB6cCN3P2mknbn7I2Z2OzC72AcPDAzQ3t4+ND9nzhxg7SdVtLS00NLSQkdHx9A1MQ0NDcydO5fOzk56enpYunQp06dPZ968efT19bF48eKh7VtbW2lubl7rc5qampg9ezaLFi2it7d3aHl7ezs9PT10dnYOLWtra6OxsXGti8Wbm5tpbW1lwYIF9Pf3A1BfX8+8efPo6uqiq6ur7GMaVK3HdM0117B8+fKaOiao7t/T0qVLmT17dk0dE1T/76mzs5Pp06fX1DFV++/pDW94A3vuuWdNHVO1/54G/z9aS8c0mr8nSXErKTP7KnA88AqwCbAF8BvgzUCLu/ebWQPQ5e7Th227LXCru09N5t9B7jrTw4et1wT8zN33LVDDVOBKd98tuSb1EnKXBNzu7j8ZaZtK3Uqqvb1dX5rAlHl4yjwO5R6eMg9PmadT8FZSU827P59yH3Mycispdz/d3ackDcxjgOvd/ThyvZ2D13+eAFw+wrb/AP5uZoON1hnA/QBmtnXycxzwv8AFaQp29weTfRyRZn0RERERGTvKuULhHOAQM1sGHJLMY2aNZnZV3nonAT83s78AewJfSZa3mVkv8CDQB/y4hM8+G5hSRu0iIiIiY8M4SzfVCD0hqoiBgQHq6+srUJGkpczDU+ZxKPfwlHl4yjyddZ7WPyNdw9M+6tk4rZ91fX19sUvIHGUenjKPQ7mHp8zDU+YVkLHR+jV0KKMjf1SdhKHMw1PmcSj38JR5eMpcSlX0VlIiIiIiEomRua7EjB2uiIiIiFQzNU6LaG1tjV1C5ijz8JR5HMo9PGUenjKXUmm0voiIiEhkBUfr72je/cWUo/VP0Gj9TNBTLcJT5uEp8ziUe3jKPDxlLqXSgCgRERGRaqUBUSIiIiJSq8xsuZktMbO7zew11z9aznfM7CEz+4uZ7R26RvWcFtHU1BS7hMxR5uEp8ziUe3jKPDxlXgGV70o8yN2fKvDeu4BpybQfcH7yMxgNiBIRERGJrOCAqJ3Mu7+cckDUscUHRJnZcmCfQo1TM1sAdLn74mR+KdDi7v2piqgAndYvYtGiRbFLyBxlHp4yj0O5h6fMw1PmFZD+8aWTzaw7b5ozwt4cuMbMegq8vx3w97z5FcmyYHRav4je3t7YJWSOMg9Pmceh3MNT5uEp86CeSnErqbe5e5+ZbQ1ca2YPuvtNee+P1E0b9DS7ek5FREREqpWVMKXg7n3JzyeAy4B9h62yAtg+b34K0Le+5a8PNU5FREREMsDMNjez+sHXwKHAvcNWuwL4QDJq/y3AcyGvNwUNiBIRERGJruCAqJ3Nu89JOSDq/eseEGVmO5HrLYXcpZ2L3P1sM/s4gLtfYGYGnAccBrwIfMjdgzao1HNaRE9PT+wSMkeZh6fM41Du4Snz8JR59XD3h919j2T6D3c/O1l+gbtfkLx2dz/R3Xd2991DN0xBjdOiOjs7Y5eQOco8PGUeh3IPT5mHp8wrIP1o/ZpQQ4ciIiIiImOdbiUlIiIiUq0MsJRD8cPe8WnUqOe0iLa2ttglZI4yD0+Zx6Hcw1Pm4SlzKZUap0U0NjbGLiFzlHl4yjwO5R6eMg9PmUup1DgtoqOjI3YJmaPMw1PmcSj38JR5eMq8AjQgSkREREQkDg2IEhEREalmGetKzNjhlq65uTl2CZmjzMNT5nEo9/CUeXjKXEqlx5eKiIiIRFbw8aXTzLu/ma4v0d69Zp2PLx0r1HNaxIIFC2KXkDnKPDxlHodyD0+Zh6fMpVS65rSI/v7+2CVkjjIPT5nHodzDU+bhKfMKyFhXYsYOV0RERESqmXpOi6ivr49dQuYo8/CUeRzKPTxlHp4yr4CMdSVqQJSIiIhIZOscEPWdlAOiZmpAVCZ0dXXFLiFzlHl4yjwO5R6eMg9PmZfJALN0U41Q47QI/aMKT5mHp8zjUO7hKfPwlLmUStecioiIiFSzjHUlZuxwRURERKSaaUBUEX19fTQ2NlagIklLmYenzONQ7uEp8/CUeToFB0Q1mXd/vy7dPg55VQOiREREREQqSY3TIhYuXBi7hMxR5uEp8ziUe3jKPDxlLqXSgCgRERGRamXJlCHqORURERGRqqGe0yJaWlpil5A5yjw8ZR6Hcg9PmYenzCsgY12JGq0vIiIiElnB0frTzbsvSDla/2CN1s+Ejo6O2CVkjjIPT5nHodzDU+bhKfMKGGfpphqhxmkRAwMDsUvIHGUenjKPQ7mHp8zDU+ZSKl1zKiIiIlKtNFpfhmtoaIhdQuYo8/CUeRzKPTxlHp4yl1JpQJSIiIhIZAUHRO1q3n1huhPd9o5XNCAqCzo7O2OXkDnKPDxlHodyD0+Zh6fMpVRqnBbR09MTu4TMUebhKfM4lHt4yjw8ZV4BlnKqEWqcioiIiEjV0Gh9ERERkWpltXUP0zQ0IKqIgYEB6uvrK1CRpKXMw1PmcSj38JR5eMo8nYIDot4wzrt/lHJA1Ftf1oCoLOjr64tdQuYo8/CUeRzKPTxlHp4yr4BxKacaUUOHMjoWL14cu4TMUebhKfM4lHt4yjw8ZS6l0jWnIiIiItUsW5ecqudURERERKqHGqdFtLa2xi4hc5R5eMo8DuUenjIPT5lLqTRaX0RERCSygqP13zjOuy9OOVr/zRqtnwnt7e2xS8gcZR6eMo9DuYenzMNT5lIqDYgSERERqWaWrRFR6jkVERERkaqhntMimpqaYpeQOco8PGUeh3IPT5mHp8wrIGNdiRoQJSIiIhLZOgdE/XzDdPvYe3W2BkSZWZ2Z3WVmVybzk8zsWjNblvycWGC7CWZ2iZk9aGYPmNn+ee+dZGZLzew+M/t63vL5ZtZtZgcm81PNzM3spLx1zjOzD67HMZdk0aJFo/0RMowyD0+Zx6Hcw1Pm4SnzMhl6fOk6nAw8kDd/GnCdu08DrkvmR/Jt4A/uviuwx+A+zOwgYBbwJnf/D+AbyfJdk+0OAE7M288TwMlmtlEJNZett7c35McJyjwGZR6Hcg9PmYenzKVUqRqnZjYFOBy4MG/xLOCi5PVFwJEjbLcFuUbmDwHcfbW7r0ze/n/AOe6+KnnviWR5HbAGcNZ+YNeT5BrBJ6SpWURERKQmmKWbakTantNzgc+SazQO2sbd+wGSn1uPsN1O5BqVP04uCbjQzDZP3msC3mFmt5nZjWb25mRf9wGbAX8Czh+2v3OAeWZWl7JuERERERlDig6IMrMjgJnu/gkzawFOdfcjzGylu0/IW+9Zd584bNt9gFuBt7n7bWb2beB5dz/DzO4Frid3ucCbgV8CO/kIBZnZVOBKd9/NzC4GrgX2A7rd/Scj1T19+nRva2sbmp8zZw4ACxcuHFrW0tJCS0sLHR0dDAwMANDQ0MDcuXPp7Oykp6dnaN158+bR19fH4sWLh5a1trbS3Ny81g2Gm5qamD17NosWLVrrVEZ7ezs9PT10dnYOLWtra6OxsZGOjo6hZc3NzbS2trJgwQL6+/sBqK+vZ968eXR1ddHV1aVj0jHpmHRMOiYdk46pxo7pi1/84sgDov5jnHf/Mt0Vjbb7qpoYEJWmcfpV4HjgFWATYAvgN+QalC3u3m9mDUCXu08ftu22wK3uPjWZfwdwmrsfbmZ/IHdavyt576/AW9z9yRFqmMq/G6e7ApcANwG3F2qcVmq0fk9PD83NzWXvR9JT5uEp8ziUe3jKPDxlnk7B0foZbJwWPa3v7qe7+5SkgXkMcL27Hwdcwb+v/zwBuHyEbf8B/N3MBhutM4D7k9e/BQ4GMLMmYCPgqRT1PJjs44hi61ZC/l9dEoYyD0+Zx6Hcw1Pm4SnzCtA1p6mdAxxiZsuAQ5J5zKzRzK7KW+8k4Odm9hdgT+AryfIfATslp/d/AZww0in9As4GppRRu4iIiIhUoZKeEJWcgu9KXj9Nrid0+Dp9wMy8+buB13Qxu/tq4LiUn7sc2C1v/h5q6o5eIiIiIiMYvM9phmTscEuXP6hKwlDm4SnzOJR7eMo8PGUupVLjtIjGxsbYJWSOMg9Pmceh3MNT5uEpcymVGqdF5N9yQsJQ5uEp8ziUe3jKPDxlXgEaECUiIiIitcTMtjezG8zsATO7z8xOHmGdFjN7zszuTqYvxKi1pAFRIiIiIhJYZboSXwHmufudZlYP9JjZte5+/7D1/s/dg9yusxD1nBahGweHp8zDU+ZxKPfwlHl4yrw6uHu/u9+ZvB4AHgC2i1vVyIo+IWqsqtQTokRERERGW8EnRO1e592XbZJuH9Ne/BtrP9BoobsvfM16uSdv3gTs5u7P5y1vAS4FVgB95B5Zf1/6o6gM9ZwWsWDBgtglZI4yD0+Zx6Hcw1Pm4SnzoJ5y933yppEapuPJNUA/nd8wTdwJvN7d9wC+S+5pnsGpcVpEf39/7BIyR5mHp8zjUO7hKfPwlHkFWMqp2G7MNiTXMP25u/9m+Pvu/ry7v5C8vgrY0MwmV+Yg0lPjVERERKTGmZkBPwQecPdvFlhn22Q9zGxfcu3Ep8NVmaPR+kXU19fHLiFzlHl4yjwO5R6eMg9PmVfAuIrcw/RtwPHAEjO7O1n2OWAHAHe/APgv4P+Z2SvAv4BjPMLgJA2IEhEREYlsnQOirtg03T52+ueI+xhrdFq/iK6urtglZI4yD0+Zx6Hcw1Pm4SnzMqW93rR2HhClxmkx+kcVnjIPT5nHodzDU+bhKXMpla45FREREalmlbnmdMxQz6mIiIiIVA0NiCqir6+PxsbGClQkaSnz8JR5HMo9PGUenjJPp+CAqDfVeffvNk+3jx0GNCBKRERERKSS1DgtYuHC1zz5S0aZMg9Pmceh3MNT5uEpcymVBkSJiIiIVCsjc12JGTtcEREREalm6jktoqWlJXYJmaPMw1PmcSj38JR5eMq8Aixbt5LSaH0RERGRyAqO1t+jzrt/Pz7dPrZ7XqP1s6CjoyN2CZmjzMNT5nEo9/CUeXjKvFyWuwl/mqlGqHFaxMDAQOwSMkeZh6fM41Du4Snz8JS5lErXnIqIiIhUK6OmekXTUM9pEQ0NDbFLyBxlHp4yj0O5h6fMw1PmUioNiBIRERGJrOCAqD038O5rt0i3j62f1YCoLOjs7IxdQuYo8/CUeRzKPTxlHp4yl1KpcVpET09P7BIyR5mHp8zjUO7hKfPwlHkFjBuXbqoRtXMkIiIiIjLmabS+iIiISNUysGz1JWpAVBEDAwPU19dXoCJJS5mHp8zjUO7hKfPwlHk6hQdEbejd109Mt48tn9SAqCzo6+uLXULmKPPwlHkcyj08ZR6eMi+ToWtOZW2LFy+OXULmKPPwlHkcyj08ZR6eMpdSqXEqIiIiIlVDA6JEREREqpaB1cUuIij1nBbR2toau4TMUebhKfM4lHt4yjw8ZS6l0mh9ERERkcgKjtbfe2PvvrEh3T62+JtG62dBe3t77BIyR5mHp8zjUO7hKfPwlLmUStecioiIiFQtA9swdhFBqedURERERKqGek6LaGpqil1C5ijz8JR5HMo9PGUenjIvl8G4jWMXEZQGRImIiIhEVnhA1Kbe/aed0+1j8/s0ICoLFi1aFLuEzFHm4SnzOJR7eMo8PGVernFgm6SbaoQap0X09vbGLiFzlHl4yjwO5R6eMg9PmUupdM2piIiISLWycWCbxq4iKPWcioiIiEjV0IAoERERkcgKDohqfp1337J/un1sfLUGRGVBT09P7BIyR5mHp8zjUO7hKfPwlLmUSo3TIjo7O2OXkDnKPDxlHodyD0+Zh6fMy1UHVp9uqhFqnIqIiIhI1VDjVERERESqhm4lVURbW1vsEjJHmYenzONQ7uEp8/CUebnGgW0Ru4ig1HNaRGNjY+wSMkeZh6fM41Du4Snz8JS5lEqN0yI6Ojpil5A5yjw8ZR6Hcg9PmYenzMtkG4BNSDfVCDVORURERKRq6JpTERERkapVBzYpdhFBqee0iObm5tglZI4yD0+Zx6Hcw1Pm4SlzKZUeXyoiIiISWcHHl+7zeu++47R0+xj3CT2+NAsWLFgQu4TMUebhKfM4lHt4yjw8ZS6l0jWnRfT398cuIXOUeXjKPA7lHp4yD0+Zl2sDQNecioiIiIhEoZ7TIurr62OXkDnKPDxlHodyD0+Zh6fMy1UHbBm7iKA0IEpEREQkssIDopq8+47vp9vHuEOyNSDKzOrM7C4zuzKZn2Rm15rZsuTnxALbTTCzS8zsQTN7wMz2T5Z/ycz+YmZ3m9k1ZtaYt818M+s2swOT+alm5mZ2Ut4655nZB9fzuFPr6uoa7Y+QYZR5eMo8DuUenjIPT5mXa4PcfU7TTDWilGtOTwYeyJs/DbjO3acB1yXzI/k28Ad33xXYI28f8939Te6+J3Al8AUAM9s1ef8A4MS8/TwBnGxmG5VQc9n0jyo8ZR6eMo9DuYenzMNT5lKqVI1TM5sCHA5cmLd4FnBR8voi4MgRttuCXCPzhwDuvtrdVyavn89bdXNg8PqCOmBNMm956zxJrhF8QpqaRURERMa+OmBiyqk2pO05PRf4LLlG46Bt3L0fIPm59Qjb7USuUfnj5JKAC81s88E3zexsM/s7cCxJz6m73wdsBvwJOH/Y/s4B5plZXcq6RURERGQMKTogysyOAGa6+yfMrAU41d2PMLOV7j4hb71n3X3isG33AW4F3ubut5nZt4Hn3f2MYeudDmzi7mcWqGEqcKW772ZmFwPXAvsB3e7+k5G2mT59ure1tQ3Nz5kzB4CFCxcOLWtpaaGlpYWOjg4GBgYAaGhoYO7cuXR2dtLT08PAwAD19fXMmzePvr4+Fi9ePLR9a2srzc3NtLe3Dy1rampi9uzZLFq0iN7e3qHl7e3t9PT00NnZObSsra2NxsZGOjo6hpY1NzfT2trKggULhu4NN/j5XV1da50eWd9jGlStx/SPf/yDK664oqaOCar79zQwMEBLS0tNHRNU/++pp6dnaCRzrRxTtf+eZs+ejbvX1DFV++9p8P+jtXRMo/F7+uIXv1hgQNTu3t19xfDFIzLbqSYGRKVpnH4VOB54BdgE2AL4DfBmoMXd+82sAehy9+nDtt0WuNXdpybz7wBOc/fDh633euB37r5bgRqm8u/G6a7AJcBNwO2FGqeVGq3f19dHY2Nj8RWlYpR5eMo8DuUenjIPT5mnU3i0/l7e3X1Dyn1MrInGadHT+u5+urtPSRqYxwDXu/txwBX8+/rPE4DLR9j2H8DfzWyw0ToDuB/AzKblrfpu4ME0Bbv7g8k+jkizfrny/0KSMJR5eMo8DuUenjIPT5lXDzM7zMyWmtlDZvaageyW853k/b+Y2d4x6iznJvznAL8ys48AjwLvA0huCXWhu89M1jsJ+Hkyyv5h4EOD2yeN1jXA34CPl/DZZwN3lVG7iIiIyBhQB0woey/JeJ3vAYcAK4A7zOwKd78/b7V3AdOSaT9yY3/2K/vDS1RS49Tdu4Cu5PXT5HpCh6/TB8zMm78beE0Xs7u/t4TPXQ7sljd/D0V6fR966CFaW1vTfkRBS5cuXeuaERl9yjw8ZR6Hcg9PmYenzKvGvsBD7v4wgJn9gtydl/Ibp7OAiz13zeetyb3qGwYHwIdSs0+IMjM9HkpERETGiqfc/bDhC83sD8DklPvYBHgpb36huy9M9vNfwGHu/tFk/nhgP3f/ZN5nXQmc4+5/SuavA/7H3YO2qco5rV/VauGCYBEREcm2kRqs68lGWDa8hzLNOqOulCdEiYiIiMjYtALYPm9+CtC3HuuMOjVORURERGrfHcA0M9sxGaR+DLk7L+W7AvhAMmr/LcBzoa83hRo+rS8iIiIiOe7+ipl9Eria3C0AfuTu95nZx5P3LwCuIjeo/SHgRf59h6WganZAlIiIiIiMPTV5Wt/MNjGz283sHjO7z8y+mCyfZGbXmtmy5OfEEbbd3sxuMLMHkm1Pznuv3cweM7O7k2lm3nvzzazbzA5M5qea2b/y1r3bzD4Q4vhjKzP/EbdN3ms0s+vN7HIzG58sG/47udvMJgQ72IhGMWd9z1MoJ/+8fdSZ2V3JCNnBZfqe5xnFnPU9T6nc34GZLTezJUlu3XnL9V2Xkbl7zU3kRpuNT15vCNwGvAX4OrnHpwKcBnxthG0bgL2T1/VAL/DGZL4dOHWEbXYF5gObAb9Klk0F7o2dxRjMf8Rtk/lzgP8AWoGPr+t3koVpFHPW93yU88/bx38Di8g9nnlwmb7nYXLW9zzQ7wBYDkweYbm+65pGnGqy59RzXkhmN0wmJ3dz2YuS5RcBR46wbb+735m8HgAeALYr8pF15J505Yx8G4ZMKTP/QtvCv3Neg3IezZwL0fc8Tzn5A5jZFOBw4MJhb+l7nmcUcy5E3/Nhyv0drIO+6zKimmycwtBpnLuBJ4Br3f02YBtPRp0lP7cuso+pwF7k/koc9EnLPW/2R4OnMNz9PnJ/Zf+J3KO+Bu087NTEOyp0eFWvnPwLbAtwHrCA3KNuf5a3ySl5Gd8wKgdUpUYpZ9D3PJUy/ztzLvBZcv9jzqfv+TCjlDPoe55amb8DB64xsx4zm5O3XN91GVnsrtvRnsg9kPYGco8/XTnsvWfXsd14oAd4T96ybcj9pTcOOJvcSLdC208lw6eBys1/+LbrWKcdnQKqaM76no9+/sARwPeT1y3knW4usH99zyucs77nYX4HyfLG5OfWwD3AAevYv77rmmq353SQu68EuoDDgMfNrAEg+fnESNuY2YbApcDP3f03eft63N1fdfc1wA/IPadW1mF98i+wraxDJXPW97x065H/24B3m9ly4BfAwWb2sxHWkzyVzFnf8/WzPv+tcfe+5OcTwGUoaymiJhunZrbV4Og+M9sUeCfwILmby56QrHYCcPkI2xrwQ+ABd//msPca8maPAu6tePE1oMz8C20rw4xWzvqep1NO/u5+urtPcfep5G6Efb27Hxei7rFmtHLW9zy9Mv9bs7mZ1Q++Bg5FWUsRtXoT/gbgIjMbPGXzK3e/0sxuAX5lZh8BHgXeB7nbWQAXuvtMcn9pHw8sSa6vAficu18FfN3M9iR3/cxyYG6ROnbO2wfkTht9pwLHV+3KyX/EbYt83ilmlv8/9iPdfXllD6kqjVbO+p6nU07+60Pf88rmrO95euX8DrYBLsv1+7ABsMjd/1Dk87L6XZeEbsIvIiIiIlWjJk/ri4iIiMjYpMapiIiIiFQNNU5FREREpGqocSoiIiIiVUONUxERERGpGmqcioiIiEjVUONURERERKrG/wdcDVKJOMlTUAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig = template_group.catalog.plot_map()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Relocate events\n", "\n", "All earthquakes detected with the same template are simply given the template location. However, their actual locations are spread around. Here, we create an `Event` instance for each of the unique events and use `phasenet` and `NLLoc` to relocate them." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2022-09-26 15:42:42.656085: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.7/lib64\n", "2022-09-26 15:42:42.656130: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.\n" ] } ], "source": [ "import tensorflow as tf\n", "\n", "from BPMF.data_reader_examples import data_reader_mseed\n", "\n", "# this is necessary to limit the number of threads spawn by tf\n", "os.environ[\"TF_NUM_INTRAOP_THREADS\"] = str(n_CPUs)\n", "os.environ[\"TF_NUM_INTEROP_THREADS\"] = str(n_CPUs)\n", "tf.config.threading.set_inter_op_parallelism_threads(n_CPUs)\n", "tf.config.threading.set_intra_op_parallelism_threads(n_CPUs)\n", "tf.config.set_soft_device_placement(True)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "# DURATION_SEC: the duration, in seconds, of the data stream starting at the detection time\n", "# defined by Event.origin_time. This data stream is used for picking the P/S waves.\n", "DURATION_SEC = 60.0\n", "# THRESHOLD_P: probability of P-wave arrival above which we declare a pick. If several picks are\n", "# declared during the DURATION_SEC data stream, we only keep the best one. We can\n", "# afford using a low probability threshold since we already know with some confidence\n", "# that an earthquake is in the data stream.\n", "THRESHOLD_P = 0.10\n", "# THRESHOLD_S: probability of S-wave arrival above which we declare a pick.\n", "THRESHOLD_S = 0.10\n", "# PHASE_ON_COMP: dictionary defining which moveout we use to extract the waveform\n", "PHASE_ON_COMP = {\"N\": \"S\", \"1\": \"S\", \"E\": \"S\", \"2\": \"S\", \"Z\": \"P\"}\n", "# MAX_HORIZONTAL_UNC_KM: Horizontal location uncertainty, in km, above which we keep the template location\n", "MAX_HORIZONTAL_UNC_KM = 10." ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 4.87it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 6.43it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 6.39it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 6.26it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 6.22it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 6.21it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 5.69it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 6.34it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 6.31it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 6.05it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 5.49it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 5.79it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 5.88it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 6.28it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 6.26it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 6.00it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 6.43it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 5.80it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 6.12it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 6.43it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 6.23it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 6.25it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 6.64it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 6.24it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 5.54it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 6.15it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 5.20it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 5.25it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 6.24it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 5.60it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 6.29it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 5.49it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 6.16it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 5.17it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 5.81it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 5.66it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 5.98it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 5.65it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 5.89it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 5.62it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 5.47it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 5.27it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 5.63it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 6.58it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 5.24it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 5.37it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 5.85it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 6.23it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 5.79it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 5.76it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 5.53it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 6.08it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 5.45it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "n events: 1, n stations: 8, batch size (n events x n stations): 8\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Pred: 100%|██████████| 1/1 [00:00<00:00, 6.13it/s]\n" ] } ], "source": [ "events = []\n", "for idx, row in template_group.catalog.catalog.iterrows():\n", " tid, evidx = row.name.split(\".\")\n", " # get the template instance from template_group\n", " template = template_group.templates[template_group.tindexes.loc[int(tid)]]\n", " # this is the filename of the database where template tid's detected events were stored\n", " detection_db_filename = f\"detections_template{tid}.h5\"\n", " db_path = os.path.join(BPMF.cfg.OUTPUT_PATH, MATCHED_FILTER_DB)\n", " with h5.File(os.path.join(db_path, detection_db_filename), mode=\"r\") as fdet:\n", " keys = list(fdet.keys())\n", " event = BPMF.dataset.Event.read_from_file(hdf5_file=fdet[keys[int(evidx)]])\n", " # attach data reader this way (note: conflict with data_reader argument in phasenet's wrapper module)\n", " event.data_reader = data_reader_mseed\n", " # pick P-/S-wave arrivals\n", " event.pick_PS_phases(\n", " DURATION_SEC,\n", " phase_on_comp=PHASE_ON_COMP,\n", " threshold_P=THRESHOLD_P,\n", " threshold_S=THRESHOLD_S,\n", " inter_op_parallelism_threads=n_CPUs,\n", " intra_op_parallelism_threads=n_CPUs,\n", " data_folder=DATA_FOLDER,\n", " )\n", " event.relocate()\n", " events.append(event)\n", " if (\"NLLoc_reloc\" in event.aux_data) and (event.hmax_unc) < MAX_HORIZONTAL_UNC_KM:\n", " template_group.catalog.catalog.loc[row.name, \"longitude\"] = event.longitude\n", " template_group.catalog.catalog.loc[row.name, \"latitude\"] = event.latitude\n", " template_group.catalog.catalog.loc[row.name, \"depth\"] = event.depth" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABMQAAAHECAYAAADWCPZdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABnbElEQVR4nO3deZxVdf3H8fdnQMBlFBBQRlBMRTMXdAYyWxw1FYlRK0vR1GwBLXdcW3DKNH8qlmUZuGeCqeEy5kYqLlnJjEtqJm6YOiziOqSAyOf3x1xoGOYOc+F+5px75vV8PM6DuWe553Nm3l6Gr9/zOebuAgAAAAAAALqKsqQLAAAAAAAAADoTA2IAAAAAAADoUhgQAwAAAAAAQJfCgBgAAAAAAAC6FAbEAAAAAAAA0KUwIAYAAAAAAIAuhQExAAAAAAAArDUzG2xmD5jZc2b2rJmdmFvf18ymm9kLuT/75Dl+pJk9b2YvmtmZobW6e+T7AwAAAAAAoAsws4GSBrr742ZWLqlB0kGSvinpbXc/PzfQ1cfdz2h1bDdJsyTtI+l1STMljXH3f0XUygwxAAAAAAAArDV3n+Puj+e+bpL0nKTNJB0o6drcbteqeZCstRGSXnT3l919iaQbcseFYEAMAAAAAAAARWVmQyTtIukfkjZx9zlS86CZpAFtHLKZpNdavH49ty5E96g3TpqZcS8oAAAAAADIunvcfWTrlYHjIs9KWtTi9WR3n9zq3BtI+pOkk9z9fTPryPu2tVPY2E5mB8QqKytVX1+fdBkAAAAAAABhzKxfJ59ykbtX5dtoZuuoeTDseneflls9z8wGuvucXJ+x+W0c+rqkwS1eD5LUWKyiW+OWSaBAdXV1SZeADCNfiEK2EIl8IQrZQiTyhShpyZZJ6hmwtHvO5qlgV0p6zt0vbrHpdklH5b4+StJtbRw+U9I2ZralmfWQdGjuuBAMiAEFamhoSLoEZBj5QhSyhUjkC1HIFiKRL0RJS7ZMUo+AZTU+K+kISXuZ2ZO5ZZSk8yXtY2YvqPkpkudLkplVmNmdkuTuSyUdJ+keNTfjv9Hdn13Lb0Nemb1lEgAAAAAAAJ3H3R9R273AJGnvNvZvlDSqxes7Jd0ZU93KGBADAAAAAADIGJO0TtJFpJi5Z/NhjFVVVU5TfURoampSeXl50mUgo8gXopAtRCJfiEK2EIl8IUpnZ8vMGtpqct/dzDcKON/bUpvnKzX0EAMK1NgY9pALgHwhDNlCJPKFKGQLkcgXoqQlW6bm2wKLvWQFA2JAgaZOnZp0Ccgw8oUoZAuRyBeikC1EIl+IkpZsMSDWPgbEAAAAAAAA0KVkaXAPAAAAAAAAOd2SLiDFmCEGFKimpibpEpBh5AtRyBYikS9EIVuIRL4QhWyVBp4yCQAAAAAAUKLyPWWyp5lXBJxvNk+ZBLqm2trapEtAhpEvRCFbiES+EIVsIRL5QpQ0ZassYMmKLF0LAAAAAAAAsFo01QcAAAAAAMgYE03128OAGFCgoUOHJl0CMox8IQrZQiTyhShkC5HIF6KkKVvcFpgfTfUBAAAAAABKVL6m+r3MfEjA+Z6nqT7QNU2ZMiXpEpBh5AtRyBYikS9EIVuIRL4QJS3ZMtFUvz1ZuhagU8yaNSvpEpBh5AtRyBYikS9EIVuIRL4QhWyVBnqIAQAAAAAAZBCzoPJjQAwAAAAAACBjlt8yibbRVB8AAAAAAKBE5Wuqv56Zbx1wvqdpqg90TQ0NDUmXgAwjX4hCthCJfCEK2UIk8oUoacoWTfXzy9K1AJ2irq4u6RKQYeQLUcgWIpEvRCFbiES+EIVslQZ6iAEAAAAAAGQQs6DyY0AMAAAAAAAgYyy3oG0MFgIFGjNmTNIlIMPIF6KQLUQiX4hCthCJfCEK2SoNzBADClRRUZF0Ccgw8oUoZAuRyBeikC1EIl+IkqZsMQsqP743QIEmTpyYdAnIMPKFKGQLkcgXopAtRCJfiEK2SgMzxAAAAAAAADKoLKKJmAe8ZwIYEAMAAAAAAMgYmuq3j1smgQJVVlYmXQIyjHwhCtlCJPKFKGQLkcgXopCt0mDuGZnr1kpVVZXX19cnXQYAAAAAAEAYM2tw96rW6zcw850Czvc3qc3zlRpmiAEFmjRpUtIlIMPIF6KQLUQiX4hCthCJfCFKmrJlAUtWMCAGFGjOnDlJl4AMI1+IQrYQiXwhCtlCJPKFKGSrNNBUHwAAAAAAIGNMzIJqD98boEDl5eVJl4AMI1+IQrYQiXwhCtlCJPKFKGSrNNBUHwAAAAAAoETla6pfbua7BJzvYZrqA13TjBkzki4BGUa+EIVsIRL5QhSyhUjkC1HSlK2ygCUrsnQtQKdI04cbsod8IQrZQiTyhShkC5HIF6KQrdJAU30AAAAAAIAMsqQLSDFmiAEAAAAAAKBLoak+UKDGxkZVVFQkXQYyinwhCtlCJPKFKGQLkcgXonR2tvI11d/QzIcHTBG737PRVJ9bJgEAAAAAADKIWybz45ZJoECTJ09OugRkGPlCFLKFSOQLUcgWIpEvRCFbpYEZYgAAAAAAABnELKj8+N4AAAAAAACgS2GGGFCg6urqpEtAhpEvRCFbiES+EIVsIRL5QpS0ZMtED7H28JRJAAAAAACAEpXvKZMbmfnuASNid6/mKZNmdpWk0ZLmu/sOuXV/lLRtbpfekt5192FtHDtbUpOkjyUtjXyaJbdMAgWaOHFi0iUgw8gXopAtRCJfiEK2EIl8IQrZ0jWSRrZc4e6HuPuw3CDYnyRNa+f4PXP7hg2GSdwyCRSsqakp6RKQYeQLUcgWIpEvRCFbiES+ECVN2Urilkl3f8jMhrS1zcxM0tcl7dWpRbWBGWIAAAAAAAAZY2oe9Cn2IqmfmdW3WMYWUNbnJc1z9xfybHdJ95pZQ4HvWzBmiAEFGjhwYNIlIMPIF6KQLUQiX4hCthCJfCFKF8jWgrW4nXGMpKntbP+suzea2QBJ083s3+7+0Bqeq1001QcAAAAAAChR+Zrq9zbzzwfcM3nHaprq52oaIumO5U31c+u6S3pDUqW7v76685hZraSF7n7R2lXcNm6ZBApUV1eXdAnIMPKFKGQLkcgXopAtRCJfiEK28vqipH/nGwwzs/XNrHz515L2lfRMVDEMiAEFamhoSLoEZBj5QhSyhUjkC1HIFiKRL0RJU7aCeoi1y8ymSvqbpG3N7HUz+3Zu06FqdbukmVWY2Z25l5tIesTMnpL0mKQ/u/vda3DZHUIPMQAAAAAAgAxK6CmTY/Ks/2Yb6xoljcp9/bKknUOLa4EZYgAAAAAAAOhSaKoPFKipqUnl5eVJl4GMIl+IQrYQiXwhCtlCJPKFKJ2drXxN9fuY+Z4BU8Ru6UBT/VLADDGgQI2NjUmXgAwjX4hCthCJfCEK2UIk8oUoZKs0MCAGFGjq1Kmr3wlYQ+QLUcgWIpEvRCFbiES+ECVN2bKAJStoqg8AAAAAAJAxJmZBtYfvDQAAAAAAALoUZogBBaqpqUm6BGQY+UIUsoVI5AtRyBYikS9ESVO2snSLY7HxlEkAAAAAAIASle8pk33N/IsBI2I38ZRJoGuqra1NugRkGPlCFLKFSOQLUcgWIpEvRElTtsoClqzglkkAAAAAAIAM4pbJ/LI0uAcAAAAAAACsFjPEgAINHTo06RKQYeQLUcgWIpEvRCFbiES+ECUt2TIxC6o9NNUHAAAAAAAoUfma6m9s5qMC7pn8A031ga5pypQpSZeADCNfiEK2EIl8IQrZQiTyhShkqzRwyyRQoFmzZiVdAjKMfCEK2UIk8oUoZAuRyBeipClbNNXPjxliAAAAAAAA6FKYIQYAAAAAAJAxNNVvH031AQAAAAAASlS+pvr9zLwm4J7Ja2iqD3RNDQ0NSZeADCNfiEK2EIl8IQrZQiTyhShkqzQwIAYUqK6uLukSkGHkC1HIFiKRL0QhW4hEvhAlTdkqC1iyIkvXAgAAAAAAAKwWTfUBAAAAAAAyxnIL2saAGFCgMWPGJF0CMox8IQrZQiTyhShkC5HIF6KkKVvcFpgf3xugQBUVFUmXgAwjX4hCthCJfCEK2UIk8oUoZKs0MCAGFGjixIlJl4AMI1+IQrYQiXwhCtlCJPKFKGnKFk3188vStQAAAAAAAACrRQ8xAAAAAACAjKGpfvsYEAMKVFlZmXQJyDDyhShkC5HIF6KQLUQiX4iSpmxxW2B+5u5J1xCiqqrK6+vrky4DAAAAAAAgjJk1uHtV6/UDzPxrAVPEfutq83ylhsFCoECTJk1KugRkGPlCFLKFSOQLUcgWIpEvRElTtsyKv2QFt0wCBZozZ07SJSDDyBeikC1EIl+IQrYQiXwhSlqyZWIWVHv43gAAAAAAAKBLYYYYUKDy8vKkS0CGkS9EIVuIRL4QhWwhEvlClDRli1lQ+dFUHwAAAAAAoETla6q/iZmPCRgRu2QZTfWBLmnGjBlJl4AMI1+IQrYQiXwhCtlCJPKFKGnKlgUsWcGAGFCgNH24IXvIF6KQLUQiX4hCthCJfCFKWrK1vKl+sZesyNK1AAAAAAAAAKvV4QExM+tmZk+Y2R25133NbLqZvZD7s08bx2xrZk+2WN43s5Ny22rN7I0W20a1OO5CM6s3sz1yr4eYmZvZ8S32udTMvrnmlw4AAAAgrZYtW6alS5cqqz2PAaAzMEMsvw431TezUyRVSdrQ3Ueb2QWS3nb3883sTEl93P2Mdo7vJukNSZ9291fNrFbSQne/qNV+20n6tqSzJV3j7l83syGS/iGpSdL27r7EzC6VVO/u17R1PprqI0pjY6MqKiqSLgMZRb4QhWwhEvlCMS1cuFATJ07UkiVL9PHHH2vZsmXafffdddBBByVdGjKGzy5E6exs5Wuqv6mZHxEwgnVRRprqd+/ITmY2SNKXJJ0r6ZTc6gMlVee+vlbSDEl5B8Qk7S3pJXd/dTWn6yZpmSTXyv3a3pT0V0lHSbq8I3UDAAAAKB3urh/84Af60Y9+pAEDBqz4R+UNN9ygW265RV/+8peTLhEASkqWmuAXW0fHCn8p6XQ1D1Qtt4m7z5Gk3J8DVvMeh0qa2mrdcWb2TzO7avktl+7+rKT1JD0i6bJW+58vaXxuthmQiMmTJyddAjKMfKWfu6tu2lT98NgvacKx++l3v/ipFi5cGH7et956SxN/cIomjNlPPzziQM2Yfk9Bx5MttLRgwQJddNbJmnDIfvrhEQfpwb/c2+FjX3jhBU345pE6a/999eMjDtdz//pXUfK1YMECXXT6yfrxV/bTD8cUVlMaXXv11dprYLkOGrCO9tp0ff3uN5eu2Pbhhx/q8gvO15mjR+qMmlG66Zqr9fHHH4fXNGrPPbXbeqbR5abd1jPt8/nPh5+zUA899JD2228/DRjQ/E+L5dk69NBD9eijj3L7JIqKvxsRJS3Zoql++1Y7Q8zMRkua7+4NZla9Jicxsx6SDpB0VovVl0k6R80zwc6RNFHStyTJ3Y9v/R659a+Y2WOSDluTOgAAWBvurh8ef4j23qBOPxu+SGaml+ZP1+lH36qfTfqL+vbtG3Lel196SZd8a7ROX//fGthL+niRNO3cGZp4/9Ea//NfhpwT2fXSCy/oV98arTN6zdKmvaSP/yvd/JMH9IsHvqOTz53Y7rH33jJND44/Qd986w2tb9KHLl338P369y67rX1N36jRqUue16brSB+79KfxD+iXX/quTjrvotW/Qcoc9/WD1Ouvt+lPg6UNukkffLxUF51/vL7152m65I+36dT999HR/3pMXylzuUuP/f0+nXrrNF30p1vVrVvM//fdpc962rvsQ521ubR+mfTBMumifz+inct76KmmJSHnXBOPPPKITj311Da3bbrppmpqatKGG27YyVUBALKoI7dMflbSAbmm970kbWhmf5A0z8wGuvscMxsoaX4777G/pMfdfd7yFS2/NrPLJd3RwZrPk3SzpIfa26mpqUm1tbUrXo8dO1bSyiO11dXVqq6u1sSJE9XU1CRJGjhwoMaNG6e6ujo1NDSs2Hf8+PFqbGzU1Kn/m+RWU1OjysrKlc4zdOhQHXbYYZoyZYpmzZq1Yn1tba0aGhpUV1e3Yt2YMWNUUVGhiRP/98tnZWWlampqNGnSJM2ZM0eSVF5ervHjx2vGjBkrPb6Va0rmmmbMmKG6urpMXZOUvZ9TqV7TjBkzVuyflWvK0s/pc7tVapP36vTwa4v08HOS5BrzaemMEU/oq6P30h77HhRyTdNv/oPGdH9JAzeW6uZIj78rSe9r5pTLtefXjtT666+/2mt6+umnJalL/JyKdU333XefXnr+eX24cKHOPPtsDR48uOSvacaMGZp+43Xa86OXtWyI1LhIuvxVSXpfj133Ow3YflcdfvjhbV7TrbfeqvO+d6w+/858/U7SuJ7S3GVS09y5evjee/TjH/9YBx100Bpd0/QbrlP1+y/rvY2bB2t+Mbe5pplXXab1hgzV2LFjSyZ7f/3rX3X/Hbfpq32lixulQ/pJFT0kuTRzxgOq2bNaB//7cW3TS7pmkTRvmSQt0fvT79Kt11+vjTffvKjXdN1112neyy9riaRhG0q/eEsatYG067rN/5d/6ZKPdNxxx2n33XdPxWf5E088oTPOOEO9e/fWwIEDJWnFNT3wwAN69913dfrpp6fmv6di/ZzS9BnR3jVtv/32WvLum7r/r39XxeAt1L1795K+puXbs/ZzymL2Su2aZs+ench4RFuyNKOr2DrcVF+ScjPETs011b9Q0lstmur3dffT8xx3g6R73P3qFusGLr/l0sxOVnOz/UPzHD9E0h3uvkPu9Y2SdpM0gab66GzL/9IEIpCvdPvxcV/RT3a5RWVlq3Zj+OEDO+nc3z9Z9HMuXbpUP917qGo3fmWVbU0fSb/d9vs666JL2zhyZWSrMA/efZduPP0UjXzjRfX7eKke7rOJ3tm9Wj/7/fVhM3g6w5IlS3Te3ttqQu/Zq2x79yPp8p1O0BkXXNLmsTNnztTTI7+gkR8vWmXb7z4q0x633KW99913jWo697Pb6kfWRk1Lpav3PlGnX/jLgt83KT/+8Y+14x9/pi9vvOq26e9KP3+nn25dumCVbe7ShZ8dpf+7/c9FqWP27NkavuWW2lzSlpIWS3pO0kJJsz/5v/3uXSgdt7i//jOvvf+33Xnefvtt/fKXv9RPf/pTSf/77HrnnXd08cUX65xzzkm4wq5p2bJl+ulx31Sff/9F+/aco7eXdtO0pVtr5CnnaZ+aryRd3hrj70ZE6exs5WuqP9DMjw4YEfv5aprqm9lVkpbfbbh8HKdW0nfV3B9ekn7g7ne2cexISZeoub/8Fe5+fpHLX2FtvjXnS9rHzF6QtE/utcyswsxWXJSZrZfbPq3V8ReY2dNm9k9Je0o6uYBznytp0FrUDqwx/tJEJPKVcv6xLE9nUlupzWbxLFu2TN3Udm+hHmXS0o8Wd+h9yFbHvfPOO7rl5ON09uv/1m5aqq27SUe/P0+j7/mTfnFGm//vr2QsW7ZM3fNktWeZ9NGSVQe7lvvoo4+0zsdL29y2azfXkkX5j11tTd5OTYvX7H2T8uGHH6pnnt+we5m0LE+vMDOpLM/3YU3suuWW2l3SLib1NmkTk6pN2ljS+MaVa/r4o/TcMtm3b18NHz5cZ599tt544w194Qtf0P33368f/ehHGj9+fNLldVm/PW+CDpx9g07oP0fbbSjt3vdjXTTgeT140cmaN2/e6t8gpfi7EVHSlC0LWDrgGkkj21j/C3cfllvaGgzrJuk3ar7LcHtJY8xs+46dsnAFDYi5+wx3H537+i1339vdt8n9+XZufaO7j2pxzAfuvrG7v9fqvY5w9x3dfSd3P2D5bLE85529fFQx9/opdy/LNzsMiNRymixQbOQr3YZ97kD9fXaPVdZ/uMSljbYNOWePHj3U1HdLtTWh+0/v9daow7/bofchWx133S8v1lFzXl5l8HOoL1XjA9OTKapIevXqpXf7DmkzTzc39dHoI8fmPbayslKPb751m9suWbevvrD33mte04C2a/rT0j760lEdy3hanHHGGbrl7ba33fi2NLx6TzW1Me71nJdpm732KVodG0nq38a/WoZJ+mOL38pvel+64vrWz71KVk1NjY4//njdcsstGjlypBYvXqxf//rX6t27d9KldVmvPXqXhpV/tMr643r/R9f/+oIEKioO/m5ElLRkK6mm+u7+kKQ8fxu2a4SkF939ZXdfIukGSQeuwft0CLeTAgVafn83EIF8pduBXztSU17eXS+1uLNo4SLXD/4yVGNPvTDsvGPOOE8/fWtzLW4xsaShaR09u+UXVTliRIfeg2x13LyXX9agPHdF9lj4vpYti5kN2FkOOf1cnfPOYC1pcRn1C9fRrG321bBdK/Me17NnT+36nWP0pw36rhi8cpfuWG8jbfCpnbT++uuvcU2H/vBcnbts5ZoaFq+jF3feV8Mq89eURv3799fCITvoinla6ft0/ZtSY/+tdNalv9X5gz+p91tc6xsfS9d96tM67NjvFa2OXnnWr2vNTYTdpevfleoXSfvvv3/Rzlss/fr1W9HbbP/991dZGf9sSVLPxe+3uX6TXtK7c1/r5GqKh78bEYVs5XWcmf3TzK4ysz5tbN9MUssPlddz60J0pKk+AACQ1L17d114xV26/JKfau7DM9RNS9Wtz7Yaf/F5GjR4cNh5K3fbXetd9medc8EEdX/rNX3UvZe2GX2Azj2e24ciDB0+Qs/++QZ9ylYd+FrUt1/J/8N8+Gc/p/V/d4d+euHZ6v7W61rSvZe2/fKBOue4U1Z77BEnnKj7t9paF196ibq/+7Y+2rC39h13rCr/+fTa13TNHTr352er2/zXtaRHL22374E654TV15RGNz/2tE466jDV/PkmDSj7WAuWddMW1aN0+823SZJ+cu8DmvSjH+i//3pa3q2b+o/YXRf/5Kfq1SvfMFbh/ptn/Xve3E+s5j/S3B7r6ZkP8+0J/M+H6/WT9OIq62ctlAYN37nzCwLQYUG/tfQzs5ZN2ye7++S8eze7TNI5kjz350RJ32q1T1t3ZHa88X2BGBADCrT8iUdABPKVfr169dLxZ5zX6ef95Kd20HnXtm7H2XFkq+MOGTtOx191uWr/86x6tPi1bEaPDVR56DeSK6yItt9xJ533+1vW6Ni9vvQl7fWlL6207tU3V20Sv0Y1TVmzmtLol9dOkTSlzW2bbLKJJlx+Zej5F0p6yaWtWmR4mUv1kr7yrW/pyitjz18sfHalw4ivHq3bpjynA/v8737bpcukS/+7rc4bd0KCla0d8oUoacpWB3t+FWpBe0312+LuKxoOmtnlku5oY7fXJbX8v8yDJDW2sV9RFPSUyVLCUyYBAMCaeunFF/WL735LW7zyvPou+kD/2mSQtv7qoTp2wtlJlwZ02MZm6qPmf018qOZ/ZXzQs6feWcMHIKBru/qX/6fn//x77fLxf/S21tXz6w/VMf83Sdtt/6mkSwO6vHxPmaww87EBU8R+spqnTOZqGiLpjhZPmRy4vHe8mZ0s6dPufmirY7pLmiVpb0lvSJop6TB3f7b4V0EPMaBgdXV1SZeADCNfiEK2CrPV1lvr0gce0qEP12vE9Ed13mNPMhjWDvKVTm+565I77tBj666rxkGD9IZ7yQ2Gka30OPqkM3TOnU9q+0se1airZ+qXdY+U/GAY+UKUtGQrqab6ZjZV0t8kbWtmr5vZtyVdYGZPm9k/Je0p6eTcvhVmdqckuftSScdJukfSc5JujBoMkxgQAwrW0NCQdAnIMPKFKGRrzQwePFg77rijevbsmXQpqVaK+VqyZImyeqdES1/60pf0wQcf6LXXSrPxeSlmK8vWWWcd7bjjjtpiiy2SLqUoyBeidPVsufsYdx/o7uu4+yB3v9Ldj3D3Hd19J3c/YPlsMXdvdPdRLY69092HuvtW7n5uZJ30EAMAAECXMeX6K/Xkk/dpo41MCxd+rN69t9bJp0xQjx49ki4NAICiYxZUfgyIAQAAoEu4+qrfaNNNX9QFF3x+xbpXXnlLE358vM7/v0kJVgYAQAwL6qqfBTTVBwrU1NSk8vLypMtARpEvRCFbiFQK+Vq6dKl+/KMj9POff2GVbVde2aDddz9Fn9x++wQqQ3tKIVsoXeQLUTo7W/ma6m9m5t/rVvzz/ejj1TfVLwXMngMK1NgY9tRXgHwhDNlCpFLI1+zZs7X99hu2uW3ffbfUX/96XydXhI4ohWyhdJEvRElLtpJqql8qsnQtQKeYOnVq0iUgw8gXopAtRCqFfG200UZ68822n7A4d+5CbbzxgE6uCB1RCtlC6SJfiEK2SgMDYgAAAMi8/v37a86cMn344ZJVtv3xjy9q/1EHJlAVAACxmCGWX5auBQAAAMjrpJPO0amnPqR//ONVubtmz35LZ555v0aP/q569eqVdHkAABSdBSxZwVMmgQLV1NQkXQIyjHwhCtlCpFLJ12aDBumXl9yg2269UXfd1aBNNx2kM8+6XL179066NORRKtlCaSJfiEK2SgNPmQQAAAAAAChR+Z4yOdjMTwx4yuRpPGUS6Jpqa2uTLgEZRr4QhWwhEvlCFLKFSOQLUdKULXqI5ZelawEAAAAAAABWix5iAAAAAAAAGZSlJvjFxgwxoEBDhw5NugRkGPlCFLKFSOQLUcgWIpEvRCFbpYGm+gAAAAAAACUqX1P9zc18fEBT/ZNoqg90TVOmTEm6BGQY+UIUsoVI5AtRyBYikS9ESVO2aKqfX5auBegUs2bNSroEZBj5QhSyhUjkC1HIFiKRL0QhW6WBpvoAAAAAAAAZRFP9/JghBgAAAAAAgC6FpvoAAAAAAAAlKl9T/S3M/IyApvrfp6k+0DU1NDQkXQIyjHwhCtlCJPKFKGQLkcgXoqQpW2VW/CUrGBADClRXV5d0Ccgw8oUoZAuRyBeikC1EIl+IQrZKA031AQAAAAAAMohZUPnxvQEAAAAAAECXwgwxoEBjxoxJugRkGPlCFLKFSOQLUcgWIpEvRElLtiy3oG0MiAEFqqioSLoEZBj5QhSyhUjkC1HIFiKRL0RJU7a4LTA/vjdAgSZOnJh0Ccgw8oUoZAuRyBeikC1EIl+IQrZKAzPEAAAAAAAAMohZUPkxIAYAQBfl7jKjswQAAEAW0UOsfQyIAQWqrKxMugRkGPlClOXZampq0i/OPk6LXntM6/gifdBzkEYdeZr23O+AhCtEKeOzC1HIFiKRL0QhW6XB3D3pGkJUVVV5fX190mUAAJAaH3/8sU4cs4fO/uRf1X+D/62/7KkB2vYbk7XXyAOTKw4AAABrxMwa3L2q9fotzfwnAdOgjlqqNs9XaridFCjQpEmTki4BGUa+EGXSpEm6545p+mr/+pUGwyTp2J3n667rLkymMGQCn12IQrYQiXwhCtkqDdwyCRRozpw5SZeADCNfiDJnzhw1PvuwardY3Ob29Re/rmXLlqmsjP9XhsLx2YUoZAuRyBeipCVbJmZBtYcBMQAAuogNem+sdz6U+q636rYl6kWDfQAAgCwxqYxf7/JisBAoUHl5edIlIMPIF6KUl5frkO+M1xXPDlxl21v/lXpsVsWAGNYYn12IQrYQiXwhCtkqDTTVBwCgC/nDpIs15/6L9J3t56j3utJD/+mpG+fuqp9fdbc23HDDpMsDAABAgfI11f9Emfm5AfcFHvYRTfWBLmnGjBlJl4AMI1+Isjxb3xh3ig658O+6/KPjVPv6YWra6xr96o8PMxiGtcJnF6KQLUQiX4hCtkoDA2JAgfhwQyTyhSgts7X55pvr9J/9Wj/51fUa/ZVD1a1bt+QKQybw2YUoZAuRyBeipCVby5vqF3vJCprqAwAAAAAAZFCWBrCKje8NAAAAAAAAuhSa6gMFamxsVEVFRdJlIKPIF6KQLUQiX4hCthCJfCFKZ2crX1P9rcrMLwi4L/BgmuoDAAAAAAAApYcBMaBAkydPTroEZBj5QhSyhUjkC1HIFiKRL0RJS7YsaMkKmuoDAAAAAABkELOg8uN7AwAAAAAAgKIws6vMbL6ZPdNi3YVm9m8z+6eZ3WJmvfMcO9vMnjazJ80stDE8A2JAgaqrq5MuARlGvhCFbCES+UIUsoVI5AtR0pStMiv+0gHXSBrZat10STu4+06SZkk6q53j93T3YdGN+3nKJAAAAAAAQInK95TJbcrMf7FO8c9Xs2T1T5k0syGS7nD3HdrY9mVJB7v74W1smy2pyt0XFKncvJghBhRo4sSJSZeADCNfiEK2EIl8oSV318zHHtPU667TrFmz1uq9yBYikS9EIVur9S1Jd+XZ5pLuNbMGMxsbWQRN9YECNTU1JV0CMox8IQrZQiTyheVeffVVHXfIIVr23L/U4/0m/b5/P/WprNLkm27SBhtsUPD7kS1EIl+IkqZsBT0Vsl+r/l6T3b1Dj9Y0sx9KWirp+jy7fNbdG81sgKTpZvZvd39oLettEzPEAAAAAKw1d9f3vvY19fvHPzSwqUkbm7TZggWyu+/WCUcemXR5AIDiWeDuVS2Wjg6GHSVptKTDPU//LndvzP05X9ItkkYUq+jWGBADCjRw4MCkS0CGkS9EIVuIRL4gSQ8/+KDsuX+pW6vpCOua1FhfrwULCm8HQ7YQiXwhSpqyVRawrAkzGynpDEkHuPsHefZZ38zKl38taV9Jz7S1bzHQVB8AAADAWpv061/rLyecoI3auD+ncf319fNH/qqdd9658wsDgIzL11R/aJn5rwOa6o9cTVN9M5sqqVpSP0nzJJ2t5qdK9pT0Vm63v7v7MWZWIekKdx9lZp9Q86wwqbnF1xR3P7f4V9CMGWJAgerq6pIuARlGvhCFbCES+YIk7frpT+uDjTZqc9uyfv21xRZbFPyeZAuRyBeidPVsufsYdx/o7uu4+yB3v9Ldt3b3we4+LLcck9u30d1H5b5+2d13zi2fihwMkxgQAwrW0NCQdAnIMPKFKGQLkcgXJGn4iBHqsdNOWtLqBpSFZtr6859X7969C35PsoVI5AtR0pStMiv+khUMiAEAAAAoiituuUUf7buvXt9kEzV2X0evD95cfQ4do4uvuCLp0gAAWEn3pAsAAAAAkA0bb7yxpt5zj1577TW9/vrr2mabbdSvX7+kywKALsnELKj20FQfKFBTU5PKy8uTLgMZRb4QhWwhEvlCFLKFSOQLUTo7W/ma6m9bZn5Zj+Kfb+/F7TfVLxUMFgIFamxsTLoEZBj5QhSyhUjkC1HIFiKRL0QhW6WBATGgQFOnTk26BGQY+UIUsoVI5AtRyBYikS9ESVO2ygKWrMjStQAAAAAAAACrRVN9AAAAAACAjKGpfvsYEAMKVFNTk3QJyDDyhShkC5HIF6KQLUQiX4iSpmyVWdIVpBdPmQQAAAAAAChR+Z4yuV2Z+RU9i3++zy/iKZNAl1RbW5t0Ccgw8oUoZAuRyBeikC1EIl+IkqZs0VQ/P26ZBAAAAAAAyBjLLWhblgb3AAAAAAAAgNVihhhQoKFDhyZdAjKMfCEK2UIk8oUoZAuRyBeipClbzILKj6b6AAAAAAAAJSpfU/1PlplfE9BUfzea6gNd05QpU5IuARlGvhCFbCES+UIUsoVI5AtR0pStMiv+khXcMgkUaNasWUmXgAwjX4hCthCJfCEK2UIk8oUoacmWiVlQ7eF7AwAAAAAAgC6FGWIAAAAAAAAZxCyo/GiqDwAAAAAAUKLyNdXfvsz8+l7FP9+uH9JUH+iSGhoaki4BGUa+EIVsIRL5QhSyhUjkC1HSlC0LWLKCATGgQHV1dUmXgAwjX4hCthCJfCEK2UIk8oUoacmWBTxhMi1PmTSzQWZ2qpndZmYzzewhM/utmX3JzDo01kUPMQAAAAAAAJQEM7ta0maS7pD0f5LmS+olaaikkZJ+aGZnuvtD7b0PA2IAAAAAAAAZlNHbAie6+zNtrH9G0jQz6yFp89W9CQNiQIHGjBmTdAnIMPKFKGQLkcgXopAtRCJfiEK2YuUZDGu5fYmkF1f3PgyIAQWqqKhIugRkGPlCFLKFSOQLUcgWIpEvRElLtkzp6fkVwcxGSzpH0hZqHt8ySe7uG3bk+IzOngPiTJw4MekSkGHkC1HIFiKRL0QhW4hEvhAlTdkqC1hS5JeSjpK0sbtv6O7lHR0Mk1J3LQAAAAAAAMBqvSbpGXf3NTmYWyYBAAAAAAAyKMN3TErS6ZLuNLMHJS1evtLdL+7IwQyIAQWqrKxMugRkGPlCFLKFSOQLUcgWIpEvRElLtrLeQ0zSuZIWSuolqUehB9sazixLvaqqKq+vr0+6DAAAAAAAgDBm1uDuVa3X79jNfNp6xT/f0IVq83ydzczq16YOeogBBZo0aVLSJSDDyBeikC1EIl+IQrYQiXwhSpqylfGm+n8xs33X9OAOX4uZdTOzJ8zsjtzrvmY23cxeyP3Zp41jtjWzJ1ss75vZSa32OdXM3Mz6tVh3oZnVm9keuddDcvsc32KfS83sm4VfMrB25syZk3QJyDDyhShkC5HIF6KQLUQiX4hCtjrN9yXdbWYf5sabmszs/Y4eXMjg3omSnmvx+kxJ97n7NpLuy71eibs/7+7D3H2YpEpJH0i6Zfl2MxssaR9J/2mxbrvcl19Q88UtN1/SiWZW8H2hQDG8++67+vWvf62HH35Ys2fPTrocAAAAAADaVWbFX9LC3cvdvczd13X3Dd29XNJGHT2+QwNiZjZI0pckXdFi9YGSrs19fa2kg1bzNntLesndX22x7hdqfipAy0Zm3SQty61r+a1+U80Db0d1pGagmH71q19pl1120QknnKD7779fu+22m771rW8pqz34kJzy8vKkS0BGkS1EIl+IQrYQiXwhSlqyZcr2LZNm9tNWr8sk/aHDx3fkH/RmdrOkn0sql3Squ482s3fdvXeLfd5x91Vum2yx/SpJj7v7pbnXB0ja291PNLPZkqrcfUFu268l7S7pNHe/38yGSLpDUo2kuyR9StIlkurd/Zq2zkdTfRTLs88+q7322kvz589faX3Pnj31s5/9TKeeempClQEAAAAAurp8TfV36mZet37xzzekKTVN9a+R9Ly7/9zMekq6Sc3jTrUdOX61g3tmNlrSfHdvWIsie0g6IFeczGw9ST+UNKGt/d39eHevdPf7W61/RdJjkg5b01qAQp1//vmrDIZJ0uLFizVt2rQEKkKWzZgxI+kSkFFkC5HIF6KQLUQiX4iSpmyZFX9JkaMl7WhmZ0mqk/RARwfDJKl7B/b5rKQDzGyUpF6SNjSzP0iaZ2YD3X2OmQ1Uc4+vfPZX8yjdvNzrrSRtKekpa/5uDpL0uJmNcPe5q6nnPEk3S3qovZ2amppUW1u74vXYsWMlSZMnT16xrrq6WtXV1Zo4caKampokSQMHDtS4ceNUV1enhob/jQGOHz9ejY2Nmjp16op1NTU1qqysXOk8Q4cO1WGHHaYpU6Zo1qxZK9bX1taqoaFBdXV1K9aNGTNGFRUVmjhx4op1lZWVqqmp0aRJk1Y04isvL9f48eM1Y8aMlf7D4po655pee+015fOf//xnxfuW0jVl8eeUlWuqra1VdXV1pq4piz+nUrymp59+WtXV1Zm6piz+nEr1mmbMmKHq6upMXVMWf06leE1z5sxRU1NTpq4piz+nUr2mGTNmrPjdKyvXJGXv51SK13TNNdckck1dhZnt2uLlJZImSfqrpAfNbFd3f7xD71NIDyQzq9b/bpm8UNJb7n6+mZ0pqa+7n57nuBsk3ePuV+fZPlstbplsY/sQSXe4+w651zdK2k3SBG6ZRLRTTz11pQ++lr74xS9q+vTpnVwRsqy2trZL/qWGeGQLkcgXopAtRCJfiNLZ2Wrvlsk7Nyj++Qa/n+wtk2b2QDub3d336sj7dGSGWD7nS7rRzL6t5qdEfi1XWIWkK9x9VO71emp+kuS4tThXa+dKeqKI7wfkdeaZZ+r222/XCy+8sNL6AQMG6LTTTkuoKgAAAAAddccdd+jyyy/XwIED9fHHH2v+/PkaNGhQ0mUBoSxlT4UsFnffsxjvU9AMsVLCDDEU01NPPaXjjjtOL774ohYvXqwtt9xSJ510ko444oikS0PGNDY2qqKiIukykEFkC5HIF6KQLRTDfffdpxtvvFG/+c1v1L1785yQ999/XwcffLB+//vfa9NNN024QmRNZ3925ZshtnN387sCZoht9l7iM8S+Iel6zzOgZWZbSRro7o+09z5rM0MM6DJ23nlnPfzww5o7d65effVVjRgxQpayboIAAAAAVnXppZfqhhtuWDEYJkkbbrihJkyYoB/96Ee64oorEqwOiJXFGWKSNpb0pJk1SGqQ9Kaae95vLWkPSQsknbm6N1ntUyYB/M+mm26qu+66i8EwhGnZaBMoJrKFSOQLUcgWimHjjTdWz549V1n/l7/8RQsXLkygImQdn12x3P0SSbtKmiqpv6S9c6/fkHSEu3/V3V9o5y0kMUMMAAAAAJBhixYtanO9u2vJkiWdXA3QubI6l8PdP5Y0PbesEWaIAQAAAAAyy8xWeUCWJP3rX//SF77whQQqAjqHqfmWyWIvqz2v2VVmNt/Mnmmxrq+ZTTezF3J/9slz7Egze97MXjSz1d72uDYYEAMKVF1dnXQJyDDyhShkC5HIF6KQLRTDZZddpuOPP1733HPPillhV199tebPn68TTjgh6fKQQXx26RpJI1utO1PSfe6+jaT71EaPLzPrJuk3kvaXtL2kMWa2fVSRPGUSAAAAAJBpS5cu1QUXXKDl/0Y88MADddRRRyVcFVAc+Z4yOay7+X29i3++fm+t/imTZjZE0h3uvkPu9fOSqt19jpkNlDTD3bdtdcxnJNW6+36512dJkrv/vPhXwQwxoGATJ05MugRkGPlCFLKFSOQLUcgWiqV79+76wQ9+oGnTpmnatGk66qijyBfCpCZbJllZ8RdJ/cysvsUytgPVbOLucyQp9+eANvbZTNJrLV6/nlvX9uWZ9TSzw8zsB2Y2YfnS0W8PTfWBAjU1NSVdAjKMfCEK2UIk8oUoZAuROiNfc+fO1R/+8Ac1NTWpvLxchx9+uAYOHBh+XiSrC3x2LVjdDLE11FaHsvZua7xN0nuSGiQtLvRkDIgBAAAAAFBkf/3rX3XnnXfqxBNP1IABA/Tmm2/qkksu0ciRI/W5z30u6fLQBZiksvTcFzjPzAa2uGVyfhv7vC5pcIvXgyQ1tvOeg9y9da+yDkvPtwYoEfwfHURKW77ee+893Xv3nXr0r4/o448/TrocrIW0ZQvZQr4QhWwhUmS+li1bpptvvlk/+9nPNGBA851h/fv31znnnKNp06Zp2bJlYedG8vjsatPtkpY37jtKzbO7WpspaRsz29LMekg6NHdcPo+a2Y5rWhBN9QEAq3B3/fr/ztC7s/6kvbZ8Re9+2FP3zd5GXx17oT5XvV/S5QEAAKTaP/7xD82dO1cHHnjgKtvq6urUv39/7bbbbglUhizK11R/lx7mM/oV/3y957TfVN/MpkqqltRP0jxJZ0u6VdKNkjaX9B9JX3P3t82sQtIV7j4qd+woSb+U1E3SVe5+bhvv/7Sab6XsLmkbSS+r+ZZJk+TuvlNHroMZYkCB6urqki4BGZaWfE295lJtv/i3mrD/K/rcdtLoXRbr4oOe1p1XHKO5c+cmXR7WQFqyhWwiX4hCthApMl///e9/teGGG7a5bcMNN9TChQvDzo3kpeWza/ktk8VeVsfdx7j7QHdfx90HufuV7v6Wu+/t7tvk/nw7t2/j8sGw3Os73X2ou2/V1mBYzmhJNZL2l7S1pH1zr5ev7xAGxIACNTQ0JF0CMiwt+Xrq4Sn64vYfrLTOzHTiHrN1/eX/l1BVWBtpyRayiXwhCtlCpMh8jRgxQg8++GCb22bMmMHssIzjsyuWu7/q7q9K+tnyr1uu6+j7MCAGAFhFL73b5vpNepveXzC7U2sBAAAoNRtssIE22WQT3X333Sutv+eee9S/f39tsMEGCVWGLsUk61b8JUU+1fKFmXWTVNnRg3nKJABgFYvUp831c95xbdT/E51cDQAAQOk59thjddNNN+mMM85Qr169tGjRIlVVVel73/te0qUBJc3MzpL0A0nrmtn7ar47VJKWSJrc4fehqT5QmKamJpWXlyddBjIqLfn64+9/q41ePEMjd/zvinXurrNu21Kn/OLvK56WhNKRlmwhm8gXopAtRCJfiNLZ2crXVH/XnuYPVxT/fBvMbr+pfmcxs5+7+1lrejy3TAIFamxsTLoEZFha8nXIkd/TyxudoLPv3Er3PW2aVr+uTrp1Zx107JUMhpWotGQL2US+EIVsIRL5QpTUZCv7t0z+wMy+YmYXm9lEMzuokIMZEAMKNHXq1KRLQIalKV/fG3+uTvv1E+q253Rt/rUH9Ys/PK7dPrdn0mVhDaUpW8ge8oUoZAuRyBeikK1O8xtJx0h6WtIzko4xs9909GB6iAEA8tpggw1UvedeSZcBAAAAYA2kbEZXse0haQfP9QIzs2vVPDjWIcwQAwAAAAAAQKl5XtLmLV4PlvTPjh7MDDGgQDU1NUmXgAwjX4hCthCJfCEK2UIk8oUoacmWWeZniG0s6Tkzeyz3erikv5nZ7ZLk7ge0dzBPmQQAAAAAAChR+Z4yWbmu+aNbF/98vZ5JzVMm92hvu7s/2N52bpkEClRbW5t0Ccgw8oUoZAuRyBeikC1EIl+IQrY6R27Aa7akdXJfPybpcXd/cHWDYRK3TAIAAAAAAGSPScrwLZNm9l1JYyX1lbSVpEGSfidp744cz4AYAAAAAABA1mS/h9j3JY2Q9A9JcvcXzGxARw/mlkmgQEOHDk26BGQY+UIUsoVI5AtRyBYikS9EIVudZrG7L1n+wsy6S+pwo3ya6gMAOmSXrXtqcJ8lGthHevN96aW5ZXrs+Q/Us2fPpEsDAAAAuqy8TfXXN//7p4p/vh4zU9NU/wJJ70o6UtLxkr4n6V/u/sOOHM8MMaBAU6ZMSboEZFha81W1VZl+cvAS3X5WmSYdU6Zpp5fpV99eps/t0Cvp0tBBac0WsoF8IQrZQiTyhShkq9OcKelNSU9LGifpTkk/6ujBDIgBBZo1a1bSJSDD0pivRx55RLt+wnXAiJX/ytjjU2Xacwfp0ksvTagyFCKN2UJ2kC9EIVuIRL4QJTXZWt5Uv9hLSrj7Mkm3Svqeux/s7pd7AbdBMiAGAGjX2LFjdcCItrd97TOmS/7vB51bEAAAAIAOsW7FX5JmzWrNbIGkf0t63szeNLMJhbwPA2IAgHZtsskmeuv9trctaHKt07O8cwsCAAAA0JWdJOmzkoa7+8bu3lfSpyV91sxO7uib0FQfANCuxYsX6yu791LdWaayMlux3t31tYtcl90+X/3790+wQgAAAKDryttUv9z8H7sW/3zrPJRsU30ze0LSPu6+oNX6/pLudfddOvI+zBADCtTQ0JB0CciwNOarZ8+e+mjd7fXNX7teW9D8P1Hmves6drKr8YP+DIaViDRmC9lBvhCFbCES+UIUshVundaDYZLk7m9KWqejb8KAGFCgurq6pEtAhqU1X/c+8qw+c+hvdcDPpeoJy7T/z1wVn/2JHn1qftKloYPSmi1kA/lCFLKFSOQLUdKSLbNs9hCTtGQNt62kexEKAQB0Accee6yOPfbYpMsAAAAA0FHpGMAqtp3NrK0uxyapV0ffJLMDYk8++aRGjhyp4cOHr1gGDhyYdFkAAAAAAABYQ+5elGG+zA6IfepTn9L3vvc9zZw5U7/97W81c+ZMrbvuuisNkFVVValPnz5Jl4oSM2bMmKRLQIaRL0QhW4hEvhCFbCES+UKU1GTLRKOsdmR2QGydddbRAQccoAMOOEBS89PQXn75Zc2cOVMzZ87UOeecoyeeeEIDBw5caZBsl1120XrrrZdw9UizioqKpEtAhpEvRCFbiES+EIVsIRL5QhSyVRq6zFihmWmrrbbSoYceqokTJ+qhhx7Su+++q2nTpumLX/yinn/+eZ144onq16+fdt55Z33nO9/RpEmT9MQTT+ijjz5KunykyMSJE5MuARlGvhCFbCES+UIUsoVI5AtR0pStjDbVL4rMzhDriG7dummHHXbQDjvsoKOPPlqStHjxYj311FOaOXOm/va3v+lXv/qVZs+erZ122mmlmWRDhw5VWVmXGU8EAAAAAAClxJTVpvpF0aUHxNrSs2dPjRgxQiNGjFixrqmpSY8//rgee+wx1dXVacKECXr77be13Xbb6ROf+IS23HJLfeITn1ixDBo0SN27860FAAAAAABII0ZtOqC8vFx77LGH9thjjxXrFixYoFmzZunll1/WK6+8or/+9a+67rrr9PLLL2v+/PkaNGjQKoNly7/u27evzCzBK8LaqKysTLoEZBj5QhSyhUjkC1HIFiKRL0RJVba4sS0vc/ekawhRVVXl9fX1iZx78eLFevXVV1cMlr388ssrvn7ppZckqc2Bsk984hPaYost1KtXr0TqBgAAAAAApcXMGty9qvX6qj7mj+1Z/PN1u0Vtnq/UMEMsQM+ePTV06FANHTp0lW3urnfeeWelgbKnn35at912m15++WW99tpr6t+/f97ZZZtuuim9yxI2adIkjRs3LukykFHkC1HIFiKRL0QhW4hEvhCFbJUGBsQ6mZmpb9++6tu3b5vTKJcuXao33nhjpdlld91114rX77//voYMGdLm7LItt9xS5eXlCVxV1zJnzpykS0CGkS9EIVuIRL4QhWwhEvlClNRky7L1VMhiY0AsZbp3764ttthCW2yxhfbcc9W5jQsXLtQrr7yy0gyzBx54YMWA2frrr7/KQFlNTY022WSTBK4GAAAAAAAgfRgQKzEbbLCBdtxxR+24446rbHN3zZs3b6WeZffee6/OP/98PfDAAxo8eHACFWcPs/AQiXwhCtlCJPKFKGQLkcgXoqQqW3Rcyoum+l3AxRdfrN/85je6//77tcUWWyRdDgAAAAAAKJK8TfU3Np+5X/HPVzY1G031GSvsAk455RSdcMIJqq6u1iuvvJJ0OSVvxowZSZeADCNfiEK2EIl8IQrZQiTyhShkqzQwINZFnHjiiTr11FO155576qWXXkq6nJLGhxsikS9EIVuIRL4QhWwhEvlClFRlqyxgyQh6iHUh3//+99WtWzftueeeuv/++7X11lsnXRIAAAAAAECnY0CsiznmmGNWDIrdd999Gjp0aNIlAQAAAACACBma0VVsNNXvoq666ipNmDBBf/nLX7TddtslXU5JaWxsVEVFRdJlIKPIF6KQLUQiX4hCthCJfCFKZ2crb1P9fuYza4p/vrJrstFUnxliXdS3vvUtde/eXXvvvbemT5+u7bffPumSAAAAAAAAOgWT57qwI488UhdccIG++MUv6plnnkm6nJIxefLkpEtAhpEvRCFbiES+EIVsIRL5QpRUZYum+nll6FKwJg4//HBdfPHF2mefffTUU08lXQ4AAAAAAChRZratmT3ZYnnfzE5qtU+1mb3XYp8JSdTKLZPQoYceqm7dumm//fbTXXfdpV122SXpkgAAAAAAwNowdfo0KHd/XtIwSTKzbpLekHRLG7s+7O6jO7G0VTAgBknS1772NXXr1k0jR47UnXfeqcrKyqRLSq3q6uqkS0CGkS9EIVuIRL4QhWwhEvlClDRly7olevq9Jb3k7q8mWkUePGUSK7nttts0duxY1dXVacSIEUmXAwAAAAAA2pH3KZP9zeu/GnC+SR17yqSZXSXpcXe/tNX6akl/kvS6pEZJp7r7s8WvtH30EMNKDjzwQF155ZUaPXq0/v73vyddTipNnDgx6RKQYeQLUcgWIpEvRCFbiES+ECU12Vp+y2Txm+r3M7P6FsvYVU5t1kPSAZJuaqOyxyVt4e47S/q1pFuLcr0FYkAMqxg9erSuueYaHXDAAXr00UeTLid1mpqaki4BGUa+EIVsIRL5QhSyhUjkC1FSla2YAbEF7l7VYmnrsZr7q3l22LzWG9z9fXdfmPv6TknrmFm/Yl1yRzEghjaNGjVK1113nQ466CA9/PDDSZcDAAAAAABKxxhJU9vaYGabmpnlvh6h5rGptzqxNkkMiKEd++23n6ZMmaKvfvWrevDBB5MuJzUGDhyYdAnIMPKFKGQLkcgXopAtRCJfiJKabMXdMtn+ac3Wk7SPpGkt1h1jZsfkXh4s6Rkze0rSryQd6gk0uKepPlbr/vvv1yGHHKI//vGP2muvvZIuBwAAAAAA5ORtqr+Jef0hAef7dcea6qcdM8SwWnvttZduvvlmHXLIIZo+fXrS5SSurq4u6RKQYeQLUcgWIpEvRCFbiES+ECVV2UpghlipyNClINIee+yhadOm6fDDD9c999yTdDmJamhoSLoEZBj5QhSyhUjkC1HIFiKRL0RJTbZMUreAJSMYEEOHff7zn9ett96qI444QnfeeWfS5QAAAAAAAKwRBsRQkN1331233367vvnNb6ZrGigAAAAAAFgZt0zmRVN9rJGZM2dq9OjRmjx5sg488MCky+lUTU1NKi8vT7oMZBT5QhSyhUjkC1HIFiKRL0Tp7Gzlbaq/qXn9EQHnu4im+ujChg8frjvvvFNjx47VtGnTVn9AhjQ2NiZdAjKMfCEK2UIk8oUoZAuRyBeipCpbzBDLK0OXgs5WWVmpu+++W9/73vd06623Jl1Op5k6dWrSJSDDyBeikC1EIl+IQrYQiXwhSmqyZWJArB0ZuhQkYdiwYRo2bJiee+65pEsBAAAAAADokO5JF4DSdt1112nu3LkaP3580qUAAAAAAICWmAaVFwNiWGONjY069dRTde+996pHjx5Jl9Npampqki4BGUa+EIVsIRL5QhSyhUjkC1HIVmngKZNYI+6umpoaVVVVqba2NulyAAAAAADokvI+ZbLCvP7bAef7GU+ZRBf2hz/8Qa+99pp+8IMfJF1Kp2MAEJHIF6KQLUQiX4hCthCJfCFKqrJFU/28uGUSBWtsbNT48eN1zz33dKlbJQEAAAAAQDYwIIaCuLvGjRunY489VrvsskvS5QAAAAAAgHwyNKOr2BgQQ0Guv/56vfrqq/rTn/6UdCmJGTp0aNIlIMPIF6KQLUQiX4hCthCJfCFKarJlYkCsHTTVR4fNmTNHw4YN01133aVdd9016XIAAAAAAOjy8jbV38y8/piA802gqT66kOW3So4bN67LD4ZNmTIl6RKQYeQLUcgWIpEvRCFbiES+ECVV2aKpfl7cMokOuf766zV79mzdfPPNSZeSuFmzZiVdAjKMfCEK2UIk8oUoZAuRyBeikK3SwIAYVmvOnDk65ZRTdNddd/FUSQAAAAAASgE9xNrFgBja5e465phjNG7cOFVWViZdDgAAAAAA6CgGxPKiqT7adf311+v8889XfX29evbsmXQ5AAAAAACghbxN9QeZ1x8fcL4zaaqPjJs7d65OOeUUXXPNNQyGtdDQ0JB0Ccgw8oUoZAuRyBeikC1EIl+Ikqps0VQ/rwxdCopp+a2S3/3ud7lVspW6urqkS0CGkS9EIVuIRL4QhWwhEvlCFLJVGughhjZNnTpVL730kv74xz8mXQoAAAAAACgUTfXbxYAYVjF37lydfPLJ+vOf/8ytkgAAAAAAlCoGxPLiW4OVuLuOPfZYfec731FVVcn3yAsxZsyYpEtAhpEvRCFbiES+EIVsIRL5QhSyVRqYIYaV3HDDDXrhhRd0ww03JF1KalVUVCRdAjKMfCEK2UIk8oUoZAuRyBeipCpblnQB6dXhGWJm1s3MnjCzO3Kv+5rZdDN7IfdnnzaO2dbMnmyxvG9mJ+W2nWNm/8ytv9fMKlocd6GZ1ZvZHrnXQ8zMzez4FvtcambfXPNLR2vz5s3TSSedxFMlV2PixIlJl4AMI1+IQrYQiXwhCtlCJPKFKKnJ1vIeYjxlsk2FXMqJkp5r8fpMSfe5+zaS7su9Xom7P+/uw9x9mKRKSR9IuiW3+UJ33ym37Q5JEyTJzLbLbf+CpO+3eLv5kk40sx4F1IwOWn6r5Le//W1ulQQAAAAAAJnWoQExMxsk6UuSrmix+kBJ1+a+vlbSQat5m70lveTur0qSu7/fYtv6kjz3dTdJy3KvW07ue1PNA29HdaRmFObyyy/Xiy++qLPPPjvpUgAAAAAAQDEwQyyvjvYQ+6Wk0yWVt1i3ibvPkSR3n2NmA1bzHodKmtpyhZmdK+lISe9J2jP3Xs+a2XqSHpF0Wqv3OF/SXWZ2VQfrRgc8/vjj+uEPf6hHHnmEWyU7oLKyMukSkGHkC1HIFiKRL0QhW4hEvhCFbJUGc/f2dzAbLWmUu3/PzKolneruo83sXXfv3WK/d9x9lT5iuW09JDVK+pS7z2tj+1mSerl7m9OTzGyIpDvcfQcz+72k6ZI+Lane3a9p65iqqiqvr69v99ogvfvuu6qsrNR5552nQw45JOlyAAAAAABAAcyswd1X6X1UtYV5/RkB5/u+2jxfqenIDLHPSjrAzEZJ6iVpQzP7g6R5ZjYwNztsoJp7fOWzv6TH2xoMy5ki6c+SOnK/3nmSbpb0UHs7NTU1qba2dsXrsWPHSpImT568Yl11dbWqq6s1ceJENTU1SZIGDhyocePGqa6uTg0NDSv2HT9+vBobGzV16v8mudXU1KiysnKl8wwdOlSHHXaYpkyZolmzZq1YX1tbq4aGBtXV1a1YN2bMGFVUVKzUcK+yslI1NTWaNGmS5syZI0kqLy/X+PHjNWPGDM2YMaNo13TKKafo4IMP1sYbb6znnntOtbW1JX9NnfFzqq+v17hx4zJ1TVL2fk6lek1nn332ij5+WbmmLP6cSvGaXnvtNV155ZWZuqYs/pxK9Zrq6+tVVVWVqWuSpMbGRi1evFhDhgzRfffdp/Lycg0fPlzbbbddyV6TVFrZk5qf1pala8riz6lUr6m+vl6nnnpqpq5Jyt7PqRSv6ZRTTtGGG27Y6dfUpgzd4lhsq50httLOK88Qu1DSW+5+vpmdKamvu5+e57gbJN3j7le3WLeNu7+Q+/p4SXu4+8F5jh+i3Ayx3OsbJe0maQIzxNbcL37xC02dOlUPP/wwt0oWoLa2dvUfOsAaIl+IQrYQKYv5euSRR/S3v/1N48ePV1lZ878m/v3vf+vKK6/UhRdemHB1XUcWs4X0IF+I0tnZaneG2FkB5zs2GzPE1mas8HxJ+5jZC5L2yb2WmVWY2Z3Ld8r1A9tH0rTWx5vZM2b2T0n7qvkplh11rqRBa1F7l/foo4/q/PPP14033shgGAAAQCu33XabTj311BWDYZK03Xbbafjw4Zo5c2aClQEAUACa6ufV0ab6kiR3nyFpRu7rt9T85MjW+zRKGtXi9QeSNm5jv68WcN7ZknZo8fopZerH0LkWLFigQw89VFdeeaWGDBmSdDklp7y8fPU7AWuIfCEK2UKkrOXrww8/VJ8+fWRmq2w78MADdeGFF2r48OEJVNb1ZC1bSBfyhShkqzQUdMtkKeGWybYtW7ZMo0aN0rBhw3T++ecnXQ4AAEDqLFmyROedd16bt7u89dZbuuaaazR+/PjOLwwAgDbkvWVyiHn9DwPON5ZbJlGCzjvvPH3wwQf62c9+lnQpJatlw0eg2MgXopAtRMpavnr06KFFixZp0aJFq2y75ppr9PWvfz2BqrqmrGUL6UK+ECVV2Sqz4i8ZwYBYF3L//ffrt7/9rW644QZ1717Q3bJoIVUfbsgc8oUoZAuRspiv448/XqeddppeeuklSdKiRYt0+eWXq7y8XIMHD064uq4ji9lCepAvRCFbpYFRkS6isbFR3/jGN3TdddepoqIi6XIAAABSbbPNNtN5552n66+/Xr///e9VVlamgw46SDvvvHPSpQEA0HFMg8qLAbEuYOnSpRozZoyOPfZY7b33Ks9BAAAAQBvKy8t1zDHHJF0GAAAIQFP9LuCss87S448/rrvuumulR4djzTQ2NjLLDmHIF6KQLUQiX4hCthCJfCFKZ2crb1P9Lc3ra4vf88u+6Zloqs8MsYy74447dP3116uhoYHBMAAAAAAAupLs9MAvOkZIMmz27Nn69re/rRtuuEH9+/dPupzMmDx5ctIlIMPIF6KQLUQiX4hCthCJfCFKV8+Wmc02s6fN7EkzW+XWPWv2KzN70cz+aWa7JlEnM8QyavHixfr617+uM844Q7vvvnvS5QAAAAAAgM5kSnIa1J7uviDPtv0lbZNbPi3pstyfnYoBsYw67bTTtNlmm+nkk09OuhQAAAAAAJCEdN4XeKCk33tzU/u/m1lvMxvo7nM6swgGxDLopptu0p///Gc1NDTIjBuGi626ujrpEpBh5AtRyBYikS9EIVuIRL4QhWzJJd1rZi5pkru3vod0M0mvtXj9em5dpw6I8ZTJjJk1a5Y+97nP6e6779auuyZyGy4AAAAAAOgkeZ8y+Qnz+vMCnjI5xl+V1PJ2yMktB73MrMLdG81sgKTpko5394dabP+zpJ+7+yO51/dJOt3dG4pebDvSOXkOa+SDDz7QwQcfrHPOOYfBsEATJ05MugRkWES+rr32Wn3lK1/RV77yFf32t7/VsmXLin4OpB+fXYhEvhCFbCES+UKULpCtBe5e1WJZaQaYuzfm/pwv6RZJI1od/7qkwS1eD5LUGFlwWxgQy5Djjz9eO+20k8aOHZt0KZnW1NSUdAnIsGLma9myZfryl78sSbrhhht00003acCAAaqpqdGSJUuKdh6UBj67EIl8IQrZQiTyhSipyZYFLe2d0mx9Mytf/rWkfSU902q32yUdmXva5G6S3uvs/mESPcQy45prrtHf/vY3PfbYY/QNAyBJ+ulPf6qxY8dq//33X7Hu4IMP1pZbbqkTTzxRl112WYLVAQAAAAjX+dOgNpF0S25corukKe5+t5kdI0nu/jtJd0oaJelFSR9IOrrTqxQDYpnw9NNP67TTTtODDz6oDTbYIOlyMm/gwIFJl4AMK2a+nnnmGZ199tmrrK+srNRFF11UtPOgNPDZhUjkC1HIFiKRL0Tpytly95cl7dzG+t+1+Nolfb8z62oLTfVL3Pvvv6/hw4frxz/+sb7xjW8kXQ6AFDn88MN1/fXXt7nt6KOP1tVXX93JFQEAAAAotrxN9bcyr78goKn+wd7m+UoNPcRK3Lhx41RdXc1gWCeqq6tLugRkWDHz5e6aO3fuKusXLlyo9957r2jnQWngswuRyBeikC1EIl+IQrZKAwNiJey9995TXV2dLrnkkqRL6VIaGjr1SbDoYoqZr5/85Cc64YQTtGjRohXrli5dqhNOOEGnnXZa0c6D0sBnFyKRL0QhW4hEvhAlNdkySWbFXzKCHmIl7Pnnn9fQoUPVq1evpEsBkELbbLONTjvtNI0ZM0YDBgxQWVmZ5s6dq2OOOUaf+cxnki4PAAAAQDSmQeXFgFgJe/7557XtttsmXQaAFBs+fLhuueWWpMsAAAAAgFShqX4J+9GPfqTu3burtrY26VK6lKamJpWXlyddBjKKfCEK2UIk8oUoZAuRyBeidHa28jbV39q8/uLiTxGzA5fRVB/JYoZYMhobG5MuARlGvhCFbCES+UIUsoVI5AtRyFZpYECshDEgloypU6cmXQIyjHwhCtlCJPKFKGQLkcgXoqQmWxa0ZAQ9xErUsmXL9OKLL2ro0KFJlwIAAAAAANKIaVB58a0pUf/5z3/Ut29fbbDBBkmXAgAAAAAAUFKYIVaiuF0yOTU1NUmXgAwjX4hCthCJfCEK2UIk8oUoqcoW06DyYkCsRDEglpzKysqkS0CGkS9EIVuIRL4QhWwhEvlClNRkyyRZhpp+FRljhSWKAbHk1NbWJl0CMox8IQrZQiTyhShkC5HIF6KQrdLAgFiJYkAMAAAAAAC0qyxgyYgMXUrXwoAYAAAAAADAmqGHWAn673//qwULFmjzzTdPupQuaejQoUmXgAwjX4hCthCJfCEK2UIk8oUoqcoW06DyMndPuoYQVVVVXl9fn3QZIZ544gkdeeSRevrpp5MuBQAAAAAAJMjMGty9qvX6qm3N63/brfjn++LHbZ6v1DBWWIK4XTJZU6ZMSboEZBj5QhSyhUjkC1HIFiKRL0QhW6WBWyZLEANiyZo1a1bSJSDDyBeikC1EIl+IQrYQiXwhSqqyxTSovPjWlCAGxAAAAAAAANYcA2IliAExAAAAAACwWmVW/CUjaKpfYtxdG264oV577TX17t076XIAAAAAAECC8jbV3868fnLxO2XZHktpqo/O19jYqPXWW4/BsAQ1NDQkXQIyjHwhCtlCJPKFKGQLkcgXopCt0sCAWInhdsnk1dXVJV0CMox8IQrZQiTyhShkC5HIF6KkKltlAUtGZOhSugYGxAAAAAAAANZO8W8mRahZs2YxIAYAAAAAAFYvOz3wi44ZYiWGGWLJGzNmTNIlIMPIF6KQLUQiX4hCthCJfCFKarJlAU+YzNBTJhkQKzEMiCWvoqIi6RKQYeQLUcgWIpEvRCFbiES+EIVslQYGxErI4sWL9cYbb2jLLbdMupQubeLEiUmXgAwjX4hCthCJfCEK2UIk8oUoqcoWTfXzoodYCXnxxRc1ZMgQrbPOOkmXAgAAAAAA0i47dzgWXYbG9rKP2yUBAAAAAADWHjPESggDYulQWVmZdAnIMPKFKGQLkcgXopAtRCJfiJKabJmYBtUOc/ekawhRVVXl9fX1SZdRVN/85jf1+c9/Xt/+9reTLgUAAAAAAKSAmTW4e1Xr9VXbl3n974s/D8qGf9Tm+UoNY4UlhBli6TBp0qSkS0CGkS9EIVuIRL4QhWwhEvlClFRly6z4S0Zwy2SJcHcGxFJizpw5SZeADCNfiEK2EIl8IQrZQiTyhSipyhbToPLiW1MiFixYIEnq169fwpUAAAAAAACUNmaIlYjls8MsQ9MTS1V5eXnSJSDDyBeikC1EIl+IQrYQiXwhSmqyRVP9dtFUv0RceeWVeuihh3TttdcmXQoAAAAAAEiJvE31P1Xm9VPWKf75hi2hqT46D/3D0mPGjBlJl4AMI1+IQrYQiXwhCtlCJPKFKKnKFk3182JArEQwIJYeqfpwQ+aQL0QhW4hEvhCFbCES+UKUVGWrLGDJiAxdSrYxIAYAAAAAAFAcNNUvAR999JFmz56trbfeOulSAAAAAABAqcjQLY7FxgyxEvDKK6+ooqJCvXr1SroUSBo7dmzSJSDDyBeikC1EIl+IQrYQiXwhCtkqDcwQKwEvvPCChg4dmnQZAAAAAACgVJiYBtUOvjUloLGxUZtttlnSZSBn8uTJSZeADCNfiEK2EIl8IQrZQiTyhSipylYnP2XSzAab2QNm9pyZPWtmJ7axT7WZvWdmT+aWCWHX3w5miJWAefPmaZNNNkm6DAAAAAAAgPYslTTe3R83s3JJDWY23d3/1Wq/h919dAL1rcAMsRIwf/58BsQAAAAAAEBhygKWdrj7HHd/PPd1k6TnJKXyljcGxEoAM8TSpbq6OukSkGHkC1HIFiKRL0QhW4hEvhAlNdkyk8oCFqmfmdW3WNp8ioCZDZG0i6R/tLH5M2b2lJndZWafivsm5MctkyWAAbF0Sc2HGzKJfCEK2UIk8oUoZAuRyBeidIFsLXD3qvZ2MLMNJP1J0knu/n6rzY9L2sLdF5rZKEm3StompNJ2MEOsBMybN08DBgxIugzkTJw4MekSkGHkC1HIFiKRL0QhW4hEvhAlVdmygGV1pzRbR82DYde7+7TW2939fXdfmPv6TknrmFm/tbjKNcKAWAlghli6NDU1JV0CMox8IQrZQiTyhShkC5HIF6J05WyZmUm6UtJz7n5xnn02ze0nMxuh5rGptzqvymbcMplyS5YsUVNTk/r27Zt0KQAAAAAAoJSUdWBKV3F9VtIRkp42sydz634gaXNJcvffSTpY0rFmtlTSh5IOdXfv7EIZEEu5+fPnq3///iorYzJfWgwcODDpEpBh5AtRyBYikS9EIVuIRL4QJTXZ6uAtjsXk7o+s7qzufqmkSzunovwsgUG4TlFVVeX19fVJl7HWGhoa9J3vfEdPPPFE0qUAAAAAAICUMbOGtprcV+3UzetvX7f459vyv22er9Qw7Sjl6B+WPnV1dUmXgAwjX4hCthCJfCEK2UIk8oUoqcpWmRV/yQgGxFKOAbH0aWhoSLoEZBj5QhSyhUjkC1HIFiKRL0QhW6WBHmIpN3/+fAbEAAAAAABA4Sw7M7qKjQGxlJs3b54222yzpMsAAAAAAAClxMR9ge2gqX7KHX744Ro5cqSOOOKIpEtBTlNTk8rLy5MuAxlFvhCFbCES+UIUsoVI5AtROjtbeZvq79zN6+9cv/jnG9REU33Eo4dY+jQ2NiZdAjKMfCEK2UIk8oUoZAuRyBeipCpbZsVfMoIBsZRjQCx9pk6dmnQJyDDyhShkC5HIF6KQLUQiX4hCtkoDPcRSjgExAAAAAABQOJPKsjOjq9gYEEuxpUuX6p133lG/fv2SLgUAAAAAAJQSEwNi7eCWyRRbsGCB+vTpo+7dGbdMk5qamqRLQIaRL0QhW4hEvhCFbCES+UIUslUaGGlJMW6XTKfKysqkS0CGkS9EIVuIRL4QhWwhEvlClFRlK0NN8IuNGWIpxoBYOtXW1iZdAjKMfCEK2UIk8oUoZAuRyBeipCpbZWXFXzIiO1eSQfPnz2dADAAAAAAAoMi4ZTLF5s2bpwEDBiRdBgAAAAAAKDkmGfOg8uE7k2LcMplOQ4cOTboEZBj5QhSyhUjkC1HIFiKRL0QhW6XB3D3pGkJUVVV5fX190mWslaOOOkrV1dU6+uijky4FAAAAAACkkJk1uHtV6/VVu6zj9Q9sXPzz9ZnX5vlKDTPEUowZYuk0ZcqUpEtAhpEvRCFbiES+EIVsIRL5QpT0ZMsk61b8JSMYEEsxBsTSadasWUmXgAwjX4hCthCJfCEK2UIk8oUoZKs00FQ/xRgQAwAAAAAAa8RMKlsn6SpSixliKbVs2TK9+eabPGUSAAAAAACgyGiqn1ILFizQ0KFD9fbbbyddCgAAAAAASKm8TfV37eX1Dw0u/vnKX+xaTfXNrJuZPWFmd+Re9zWz6Wb2Qu7PPm0cs62ZPdlied/MTsptu9DM/m1m/zSzW8ysd4vjLjSzejPbI/d6iJm5mR3fYp9Lzeyba3zlKcftkunV0NCQdAnIMPKFKGQLkcgXopAtRCJfiJKebJlU1rP4S0YUcsvkiZKea/H6TEn3ufs2ku7LvV6Juz/v7sPcfZikSkkfSLolt3m6pB3cfSdJsySdJUlmtl1u+xckfb/F282XdKKZ9Sig5pI1f/58bpdMqbq6uqRLQIaRL0QhW4hEvhCFbCES+UIUslUaOjQgZmaDJH1J0hUtVh8o6drc19dKOmg1b7O3pJfc/VVJcvd73X1pbtvfJQ3Kfd1N0jJJLslaHP+mmgfejupIzaWOGWIAAAAAAGDNlUnWq/hLRnR0htgvJZ2u5oGq5TZx9zmSlPtzddOZDpU0Nc+2b0m6K/dez0paT9Ijki5rtd/5ksabWbcO1l2yGBADAAAAAACI0X11O5jZaEnz3b3BzKrX5CS52xwPUO62yFbbfihpqaTrl69z9+Nb75db/4qZPSbpsDWpo5QwIJZeY8aMSboEZBj5QhSyhUjkC1HIFiKRL0RJTbasTLJ1k64itVY7ICbps5IOMLNRknpJ2tDM/iBpnpkNdPc5ZjZQzT2+8tlf0uPuPq/lSjM7StJoSXt7xx93eZ6kmyU91N5OTU1Nqq2tXfF67NixkqTJkyevWFddXa3q6mpNnDhRTU1NkqSBAwdq3LhxqqurW6kR3vjx49XY2KipU/83ya2mpkaVlZUrnWfo0KE67LDDNGXKFM2aNWvF+traWjU0NKx0L/GYMWNUUVGhiRMnrlhXWVmpmpoaPfjgg+rbt69qa2tVXl6u8ePHa8aMGZoxY0bJXtOkSZM0Z84cSSrpa1q8eLF23333TF2TlL2fU6le080336yePXtm6pqy+HMqxWsaPHiwtt1220xdUxZ/TqV6TYsXL1bPnj0zdU1Z/DmV4jUddthhmbumLP6cSvWaFi9erP322y9T1yRl7+dUitf00ksvrXT+zrqmVZVJZeu3s71rs46PQ0m5GWKnuvtoM7tQ0lvufr6ZnSmpr7ufnue4GyTd4+5Xt1g3UtLFkvZw9zdXc94hku5w9x1yr2+UtJukCe5+TVvHVFVVeX19fYevLW1Gjx6tsWPH6oADDki6FLRSW1u7mg8dYM2RL0QhW4hEvhCFbCES+UKUzs6WmTW4e1Xr9VWVG3n93z5T/PP1vKfN85WajswQy+d8STea2bcl/UfS1yTJzCokXeHuo3Kv15O0j6RxrY6/VFJPSdPNTJL+7u7HdPDc50p6Yi1qTz1umQQAAAAAAGuum2TlSReRWgUNiLn7DEkzcl+/peYnR7bep1HSqBavP5C0cRv7bV3AeWdL2qHF66fU8QcClCQGxAAAAAAAwJork2zDpItIrUwPKpUqd9e8efM0YMDqHtyJJFRWViZdAjKMfCEK2UIk8oUoZAuRyBeikK3SUFAPsVJSyj3E3n33XQ0ePHhFYz0AAAAAAIC25O0hVrWp1//j8OKfr/vFmeghxgyxFJo/fz63S6bYpEmTki4BGUa+EIVsIRL5QhSyhUjkC1HIVmlYm6b6CEL/sHRb/khdIAL5QhSyhUjkC1HIFiKRL0RJT7a6SdY36SJSiwGxFGJADAAAAAAArJ3uDIi1g1smU4gBsXQrL+extYhDvhCFbCES+UIUsoVI5AtRyFZpoKl+Cp155plab731NGHChKRLAQAAAAAAKZa/qf5WXj/zvOKfr+xQmuojxl133aW99tor6TKQx4wZM5IuARlGvhCFbCES+UIUsoVI5AtRyFZpYEAsZV5++WXNmzdPn/nMZ5IuBXnw4YZI5AtRyBYikS9EIVuIRL4QJT3Z6iZp44AlG2iqnzK33HKLDjjgAHXr1i3pUgAAAAAAQMmiqX57mCGWMrfccou+/OUvJ10GAAAAAABAZtFUP0Xmzp2rT37yk5o7d6569uyZdDnIo7GxURUVFUmXgYwiX4hCthCJfCEK2UIk8oUonZ2t/E31d/T6+tsDzvcJmuqjuG677TaNHDmSwTAAAAAAAFCSzGykmT1vZi+a2ZltbDcz+1Vu+z/NbNck6mRALEW4XbI0TJ48OekSkGHkC1HIFiKRL0QhW4hEvhAlPdnqLqlPwJKfmXWT9BtJ+0vaXtIYM9u+1W77S9omt4yVdNlaXeYaoql+Srz33nt69NFHddNNNyVdCgAAAAAAKHndJPXu7JOOkPSiu78sSWZ2g6QDJf2rxT4HSvq9N/fw+ruZ9Tazge4+pzMLzeyA2Isvvqiampqky+iwl156SV/4whdUXl6edCkAAAAAAABrYjNJr7V4/bqkT3dgn80kdeqAWGab6ptZaXXUBwAAAAAAKNwCdx/ZeqWZ3S2pX8D5ekla1OL1ZHefnDvn1yTt5+7fyb0+QtIIdz++RV1/lvRzd38k9/o+Sae7e0NArXlldoZYFp54AAAAAAAAsCbaGiTrBK9LGtzi9SBJjWuwTzia6gMAAAAAAKAYZkraxsy2NLMekg6VdHurfW6XdGTuaZO7SXqvs/uHSRmeIQYAAAAAAIDO4+5Lzew4Sfeouav/Ve7+rJkdk9v+O0l3Shol6UVJH0g6OolaM9tDDAAAAAAAAGgLt0yiSzCzXmb2mJk9ZWbPmtlPcuv7mtl0M3sh92efjh7bap9TzczNrF+LdReaWb2Z7ZF7PcTMPjSzJ1ssR0ZeN+JFZsvMjjez53PbLmixnmx1EVH5MrNhZvb3XFbqzWxEi23kqwtam6y1eI9uZvaEmd3RYl2Fmd1vZreZ2Qa5dbVm9karTPUOv0h0msA8XWhm/zazf5rZLS1zw2dX1xGVrxbb+L2+i4rMlvF7fSoxIIauYrGkvdx9Z0nDJI205nuVz5R0n7tvI+m+3OuOHitJMrPBkvaR9J8W67bLffkFSd9v8V4vufuwFsvvi3WBSExItsxsT0kHStrJ3T8l6aLcerLVtUR9dl0g6SfuPkzShNxr8tW1rU3WljtR0nOt1p0g6XhJV0j6Rov1v2iVqXeLcxlIiag8TZe0g7vvJGmWpLMkPru6oKh88Xs9QrLF7/XpxYAYugRvtjD3cp3c4mr+YLo2t/5aSQcVcOxyv5B0eqt13SQty62z4lwF0igwW8dKOt/dF+f2nZ9bT7a6kMB8uaQNc19vpP891Yd8dVFrkzVJMrNBkr6k5oGvlpZnapnIVJcRlSd3v9fdl+Ze/l3NTyWT+OzqUgI/ryR+r+/SArPF7/UpxYAYuozc9NUnJc2XNN3d/yFpk+VPs8j9OaCAY2VmB0h6w92farm/uz8raT1Jj0i6rMWmrVpNf/18US8SiYjIlqShkj5vZv8wswfNbHjuvchWFxOUr5MkXWhmr6n5/1KelXsv8tWFrU3WJP1Szf+IXNZq/aWSJkk6RtIfWqw/uUWeHijeVSAtgvLU0rck3ZV7Lz67upiIfPF7PaSwzy5+r08pnjKJLsPdP5Y0zJr7TdxiZjus5bEvS/qhpH3zHHN8G6tfyt2ihAwpdrbc/Rk1fz73kbSbpOGSbjSzT+T+zxXZ6kKC8nWspJPd/U9m9nVJV0r6Yu4Y8tVFrWnWzGy0pPnu3mBm1a3e81U13wrS2i/c/aK1qxhpFpGnFvv8UNJSSde3OB+fXV1IsfNlZuuJ3+uhsM8ufq9PKWaIocvx5j4lMySNlDTPzAZKUu7P+fmPXOXYrSRtKekpM5ut5mn7j5vZpjGVI+2KmC1Jel3StNxflI+p+f809Wv7aHQFRc7XUZKm5b6+SdKIVY9CV7UGWfuspANyfxfeIGkvM/tDG/uhCyp2nszsKEmjJR3u7t7G8ehCipgvfq/HSor82cXv9SnFgBi6BDPrnxvll5mtq+aZEP+WdLua/2Go3J+3dfRYd3/a3Qe4+xB3H6LmD7pd3X1u8OUgRSKyldt8q6S9ctuGSuohaUHQZSClAvPVKGmP3Nd7SXoh5gpQKtYma+5+lrsPyv1deKik+939G633Q9cRlSczGynpDEkHuPsH0deBdIrIF7/XQwr9u/BW8Xt9KnHLJLqKgZKuNbNuah4IvtHd7zCzv6l5yuq31fw0ma9JzY+Jl3SFu4/Kd+wa1rFV7p705a5y91+t4XshHaKydZWkq8zsGUlLJB21mv8TTrayKSpf35V0iZl1l7RI0tjV1EG+sm9tsrYmTjazloNmB7n77DUvHykTladLJfWUNN3MJOnv7n5MO/vz2ZVNnf15lQ/5yp6obPF7fUoZM40BAAAAAADQlXDLJAAAAAAAALoUBsQAAAAAAADQpTAgBgAAAAAAgC6FATEAAAAAAAB0KQyIAQAAAAAAoEthQAwAAAAAAABdCgNiAAAAAAAA6FIYEAMAAAAAAECX8v/wTjf3dPvevgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig = template_group.catalog.plot_map(lat_margin=0.01, lon_margin=0.02, s=50)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABBIAAAQNCAYAAADg2GmIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3xT5fcH8M/pbikFSsveU4aAUgTFAQiKiiLiABwoDgRxIC5UnKg/+KKAIiIqiiiILEFEWbJEBEHKlr2hUChQSkvn+f2R5Jq0SZrSzPbzfr0uJHfl3KQ9vTn3eZ4rqgoiIiIiIiIiIlcE+ToAIiIiIiIiIgocLCQQERERERERkctYSCAiIiIiIiIil7GQQEREREREREQuYyGBiIiIiIiIiFzGQgIRERERERERuYyFBCIiIiIiIiJyGQsJRETk90TkgIhkiEia1TTOw6/ZQUSOFGP7OiKiIhLiZJ2+IrJBRFJF5IiIjLReX0RiRWSOiFwQkYMi0sdqWZiIzDS/NyoiHfLt+0UR2Soi50Vkv4i8WEi8IiIjROS0eRopImJeVivfe59mfs0hhRz/MhFJF5F/RaSz1bJX8+0rQ0TyRCTOwb4cvg/m5VEiMl5ETonIORFZ6SSut0QkO9/r18u3zrPm9+yCiOwQkUZO9tfHHNMFEflJRGKtlo0Skd3mz+BfEXnI0X6IiIgCCQsJREQUKG5X1WiraZCvA3KDKADPAYgD0BbAjQBesFr+KYAsAJUB3A/gMxFpZrX8DwAPAEiys28B8BCACgC6AhgkIr2cxPIEgDsBtATQAkA3AP0BQFUPWb/3AC4HkAdglpP9TQOwEUBFAK8BmCki8eb9vZ9vfyMALFfVUw72Vdj7MBFALIAm5v8HO4kLAKbn+1naZ1kgIo8BeBTAbQCize+D3bjMMXwO4EFzbOkAxlutcgHA7QDKAegLYKyIXFNIbERERH6PhQQiIgpYIhIuImdFpLnVvHjzFe5K5ufdRCTRvN6fItLCat0DIvKCiGw2X8meLiIRIlIGwK8Aqlldta5m5/VvE5GN5hYFh0XkLavFlqviZ83bX51/e1X9TFVXqWqWqh4F8D2A9uZ9lwHQE8AwVU1T1T8AzIPpSyvM24wxz8+1s++RqvqPquao6k4Acy37dqAvgA9V9Yg5lg8BPOxg3YcArFTVA/YWmq/gXwngTVXNUNVZALaYjyf/umI+pskO9uX0fRCRxgDuAPCEqiaraq6qbnBynA6JSBCANwEMVtXtarJXVVMcbHI/gJ9VdaWqpgEYBuAuESkLAKr6pqr+q6p5qroWwCoABX4OiIiIAg0LCUREFLBUNRPAbAC9rWbfC2CFqp4UkSsBTILpynpFmK4ezxOR8HzrdwVQF6Yr8Q+r6gUAtwA4ZnXV+pidEC7A9KW6PExXsAeIyJ3mZdeb/y9v3n6NC4d0PYBt5seNAOSq6i6r5ZsANCuwVSHMX9avs9q3Pc3M+3fltR6Cgy/+Vvvap6rnXdjfdTBdzXfUuqGw96EtgIMA3jZ3bdgiIkbBwtz1YHO+fd4uIikisk1EBljNr2GempsLQ/tF5G1zgcHSxeOsiNSyOk7jPVPVvTC1nCjQFUJEIgG0gfPPgIiIKCCwkEBERIHiJ/OXOMv0uHn+VNgWEvqY5wHA4wA+V9W15ivVkwFkAmhntf7HqnrMfNX5ZwCtXA1IVZer6hbzFefNMDXnv+FSDk5EHgGQAGCUeVY0gHP5VjsHoOwl7P4tmP7mf+1knfyvdw5AtGWcBKs4LV/8ZxZhX5b92Yu9L4CZ5iv6l7KvGgCam+dVAzAIwGQRaQIAqjpVVVtYbfsjTF0g4mH6+XhDRHpb7QsAboKp+0ZHmH62HjXv65CqllfVQ5dwnBNgKjosdHCcREREAYOFBCIiChR3mr/EWaYvzPN/BxApIm1FpDZMhYA55mW1AQyxLkAAqAnTF04L6/EF0mH6cugS82suE5FkETkH4EmYxjsoEnMrhv8DcIvVOAFpAGLyrRoD4DyKQEQGwdSC4DZzC478gx1OcPB6MQDSVFXz7bIvgFnWX/zNV/Yt+7vO1djNV+nvgfPWDYXtKwNANoDh5u4eKwAsg6kYUIC5y8Ixc2HpTwBjAdxttS8AGKmqZ81dNz4HcOslxgYAEJH/wVTsuNfO+0lERBRwWEggIqKApqp5MF1l7g1Ta4T5Vk3qDwN4L18BIkpVp7myaxfWmQpTf/2aqloOpqvOliv4Ln1hFJGuAL6AaTDJLVaLdgEIEZGGVvNaoghN40WkH4BXANyoqsYdKPINdvikefY28/4dvpajL/6q2sxqf6vM29WzjBXgJPa7AKQAWO7kMAp7H/J3WygqxX+f2U6Yuia4+mXf5j0z3/0hHKaYLfPehqmbzE2qmlrMWImIiPwCCwlERFQSTAVwH0yD3021mv8FgCfNLQdERMqYB0h0pXvACQAVRaSck3XKAkhR1YsichVMhQyLZJjubFDP7pYARKQTTAMs9lTVddbLzOM0zAbwjjnu9gC6A5hitX24iESYn4aZB4q03LLxfgDvA+hifVcCJ74F8LyIVDcPLDkEwDf51ukB4CxMV/wdMo9nkAjgTXNMPWAafyL/OAh9AXzr7Cq9C+/DSgCHAAwVkRDz8g5w0IVARLqLSAXzz8NVAJ6BaSBKqGo6gOkAXhKRsiJSA6buD/MdhPc9TOMtXGceFPIdALMthSwRGQrTz0QXVT3t6BiJiIgCDQsJREQUKH62aj6fJiKW7gswj4h/AaYuC79azV8P0xfBcQDOANgDx3cisKGq/8I05sE+c7eIAndtADAQpi+45wG8AVPLCMv26QDeA7DavH07O9sPg+nWgAusjutXq+UDAUQCOGmOZYCqWl/V3wlTc/zqMH1xzoCpOwcADIdpgMm/7XRjsOdzmMaI2AJgK4BfzPOsFfrF30ovmMZ8OANTt427VTXZslBEqgPoBFMBozAO3wdVzYapsHArTOMTfAHgIfPnBxG5X0Ss37NeMP0cnDe/9gjz2BkWg2DqsnAMwBqYClOTzPuqZX4fa5lfextM3Vm+N8dW1hyrxfsAagHYbfUZvOrC8RIREfk1YVc9IiIiIiIiInIVWyQQERERERERkctYSCAiIiIiIiIil7GQQEREREREREQuYyGBiIiIiIiIiFzGQgIRERERERERuYyFBCIiIiIiIiJyGQsJREREREREROQyFhKIiIiIiIiIyGUsJBARERERERGRy1hIICIiIiIiIiKXsZBARERERERERC5jIYGIiIiIiIiIXMZCAhERERERERG5jIUEIiIiIiIiInIZCwlERERERERE5DIWEoiIiIiIiIjIZSwkEBEREREREZHLWEggIiIiIiIiIpexkEBERERERERELmMhgYiIiIiIiIhcxkICEREREREREbksxNcBuCouLk7r1Knj6zDIgdycPJw+egEVq5dBcIhVfSo3CzixDTnBVRBSuarvAiRyow0bNpxS1Xhfx+FpzLv+j7mXShPmXvIXzL1UWjjLuwFTSKhTpw7Wr1/v6zDIgdRTGZjy+ho8OPxqxMRF/rfgzEFgbAsc3tESNacv8F2ARG4kIgd9HYM3MO/6P+ZeKk2Ye8lfMPdSaeEs77JrA3lFzQmf+ToEIqJSh7mXyLtEJFhENorIfPPzWBFZLCK7zf9X8HWM5HnMvVQasJBAXnHyo9HG40WLFuHAgQO+C4aIqJTY9NJLvg6BqLR5FsAOq+evAFiqqg0BLDU/pxLO+rzXkYULF+LgwVLRyIZKKBYSyCtSF/xiPL755pvRqFEjH0ZDRFQ6lPnnH1+HQFRqiEgNALcB+NJqdncAk82PJwO408thkQ9Yn/c60rVrVzRr1swL0RB5BgsJ5BPZ2dm+DoGIiIjIncYAeAlAntW8yqp6HADM/1eyt6GIPCEi60VkfXJysscDJf9w4cIFX4dAdMlYSCAiIiIiKgYR6QbgpKpuuJTtVXWiqiaoakJ8fIm/MQURlQABc9cGCmy1f5ju6xCIiEqd+w4cxCV9qyGiomoP4A4RuRVABIAYEfkOwAkRqaqqx0WkKoCTPo2SvILnvVQasEUCeUXm7l2+DoGIqNRpGB7u6xCISgVVHaqqNVS1DoBeAH5X1QcAzAPQ17xaXwBzfRQieRHPe6k0YCGBvCJp2DBfh0BEVOoMr1rF1yEQlXb/B6CLiOwG0MX8nEo4nvdSacCuDUREREREbqKqywEsNz8+DeBGX8ZDROQJbJFARERERERERC5jIYG8Iv65wb4OgahEEZFJInJSRLZazYsVkcUistv8fwWrZUNFZI+I7BSRm30TNXnb6GSO60ZE5G3W572nTp3ChAkTfBgNkWewkEBeUa7bbb4Ogaik+QZA13zzXgGwVFUbAlhqfg4RaQrT4F/NzNuMF5Fg74VKvvJL6nlfh0BEVOpYn/f26dMHAwYMwNatW51sQRR4WEggr9jTubOvQyAqUVR1JYCUfLO7A5hsfjwZwJ1W839Q1UxV3Q9gD4CrvBEn+daS+vUBAJ9++inmzuVg8URE3mB93nvq1CkAQFZWljFPVb0eE5G7ebyQICIHRGSLiCSKyHrzPIfNb6n06NOnj01SJaJiq6yqxwHA/H8l8/zqAA5brXfEPK8AEXlCRNaLyPrk5GSPBkveM2jQINx5552+DoOIqNQREQC2xQMWEqgk8FaLhI6q2kpVE8zP7Ta/pdJl2rRpWLNmja/DICoNxM48u2cxqjpRVRNUNSE+Pt7DYREREZVsLCRQSeWrrg2Omt9SCRXVrp3d+ZbkSkRucUJEqgKA+X/LSHtHANS0Wq8GgGNejo18YM2FdJvnIoJt27b5KBoiotLB3nmvdfEgLy/Pm+EQeYQ3CgkKYJGIbBCRJ8zzHDW/tcEmtiVHteHD7c4PCuIwHURuNA9AX/PjvgDmWs3vJSLhIlIXQEMA63wQH3nZsKTjBeYtXLjQB5EQEZUe1ue9bJFAJZU3vsW1V9UrAdwC4CkRud7VDdnEtuQ49vrrduezRQLRpRGRaQDWAGgsIkdE5FEA/wegi4jsBtDF/Byqug3AjwC2A/gNwFOqmuubyMmb3q1StcA8nsASEXmW9XkvCwlUUoV4+gVU9Zj5/5MiMgemkcJPiEhVVT2er/ktlVDpf/0FoGDiZCGB6NKoam8Hi250sP57AN7zXETkj64uE1VgHk9giYg8y3LeC9g/12XXBioJPNoiQUTKiEhZy2MANwHYCsfNb6mEy584J0yYgBkzZvgoGiKi0oeFBCIi72GLBCqpPN0ioTKAOeZfoBAAU1X1NxH5G8CP5qa4hwDc4+E4yA+ICDIyMmzmTZkyBVOmTGFCJSLyEuZbIiLvOHPmDNauXQuAgy1SyePRQoKq7gPQ0s7803DQ/JZKpruSTb1Xzp8/7+NIiIhKj8579+KAr4MgIiplGixZAgB4/PHHjXnLli1DdHQ0Lr/8chZ0qUTgkPnkFTdFmPrp5uZyfDciIm+5LaZsgXk8gSUi8qxz838BAFjfde61115DixYtADAPU8nAQgJ5xZNlowE4LiScOHHCm+EQEZUKg+ML3l2ZJ7BERJ6VPGY0AMf5ll0bqCRgIYG8ylEhoUqVKl6OhIiodLpw4QLat2+PLVu2+DoUIqJSiQVdKglYSCCvYtcGIiLvyn/CunLlSvz555944YUXfBQREVHpxkIClQQsJJBXjDLfrSEnJ8fHkRARlR6vH08qcMJqaVJr797mRERUfFXefdfpcnZtoJKAhQTyioPmE9ns7GwfR0JEVHrszswsUEjglTAi9xORmiKyTER2iMg2EXnWPD9WRBaLyG7z/xV8HSt5XnjDRmjTpg1WrVpldznzMJUELCSQV3wSZbprgystElQVaWlpng6JiKjEm16ndoF5lhNYtkggcqscAENUtQmAdgCeEpGmAF4BsFRVGwJYan5OJdzBXvdh/fr1DpezkEAlAQsJ5FWuFBI+//xzlC1bFvv37/dCREREJRtbJBB5nqoeV9V/zI/PA9gBoDqA7gAmm1ebDOBOnwRIfoVdG6gkYCGBvMqVrg1z5swBAOzcudPT4RARlXgcI4HIu0SkDoArAKwFUFlVjwOmYgOAgvdkNW3zhIisF5H1ycnJXouVfMNRQZdjiVEgYSGBvGKF+cTVlUJCcHAwAOCWW27B4sWLPRoXEVFJNj81lYUEIi8SkWgAswA8p6qprm6nqhNVNUFVE+Lj4z0XIHlFzK23OV1ur5CwZMkShIaGYt26dZ4Ki8itWEggr5hShMEWg4L++7GcOnVqsV973rx5uPzyy5Genl7sfRERBZIxdq5ssmsDkWeISChMRYTvVXW2efYJEalqXl4VwElfxUfeU+n5wU6X2+va8MsvvwAAVq9e7ZGYiNyNhQTyimHm4sCmTZsKXdfSIgFwz10ehg8fjq1bt2L79u3F3hcRUSAZX6MGWyQQeYGYfqG+ArBDVT+yWjQPQF/z474A5no7NvK+w08OcLrcOi8/99xzAP7r1mB9Hkzkz1hIIK+obT5hHTzYeYUWcH8hITc3FwD7nRFR6dMoPLxAIeHEiRM+ioaoRGsP4EEAnUQk0TzdCuD/AHQRkd0AupifUwmXuWe30+XWLRLGjh0L4L/z1JCQEM8FRuRG/Eklv+PuQoLlJJqFBCIqjc6ePWvz/OjRowDYIoHInVT1DwCOfqlu9GYs5P/sdTGznKeGhoZ6OxyiS8IWCeQVp3JyC12nT58+2Lp1q00hYc6cORARZGRkFDsGS8sEIqLS4lRODqpWrerrMIiISpXg2IpOlzsrJLBFAgUKFhLIK3odPFDoOtOmTcPll1+ORYsWFViWlJRU7BjYIoGISpteBw86XMYWCUREnlH3x+lOl+cfbPGTTz4xWuGykECBgoUE8oqHKsS6vO6ZM2cKzHNHESA3NxcrV65E69atbVo4uKP7BBGRP3KWe5cuXYpjx455MRoiotLh9ORvnS7P3yLhmWeewffffw+AXRsocLCQQF7xUGyFYm2flZV1ydtakvVtt92GG264Af/88w8OHDgAAEhMTERYWBh+/fXXYsVHROSPnOXe9PR0tG3b1mbe2rVrcfHiRU+HRURUop2Z4riQkJKSgoYNGzpcbt3FV1Xx008/sXsu+SUWEiggpKenF3sf1q0aLE16N2zYAACYPt3UBC0rKwuvvPJKgcHJiIhKoiNHjhiP9+3bh3bt2uHpp5/2YURERCXbjh07XF73p59+Qo8ePTBy5EgPRkR0aVhIoIBgKSTs2LED3377X5U3IyMDS5cuxY8//miz/qlTp7Br1y6cPn3a6f4szccsld5p06ZhxIgRePPNN91+DERE/mjjxo0AYORLy3MiInI/V1oXHD9+HOnp6UZe3rt3r6fDIioyFhLIKwYcOVys7ceMGYNTp06hadOm6Nu3LwBTa4KoqCh07twZ9913n7FudnY2mjZtisaNGyMuLg6JiYkF9te6dWucPHkSQUGmXwFLUj9//jyA4nWlICLyF67k3iuvvBLAf93ALHnRmW3btmHnzp3FC46IqISq+sknDpfdcMMNhW5frVo1dOzYEWFhYQDcd166ZcsWfOIkNqKiYCGBAsJPP/2E0aNHG8+joqIwcOBAm3V69uyJF154AWFhYUhOTi50n3v27DFGzbX8bxl40RMD3WRmZrp9n0RE7mLJg5auX0ePHrV7izIAaN68OS677DKvxUZE5I/Gjh2LU6dOFZifcbH4ty1ft26dcT7qrkJCQkICnnnmmQJ3jSC6FCwk2KGqOHfunN35RbkN4ZEjRzB16lR3hhYwMjIykJSUhMPmq2Gf1ahZ7H1++OGHNvtft26dzfLZs2fbrFOYL774Ar///jsA0xgJN910k3ECbTl5PnbsGPbt21fc0JGYmIiIiAgMHz4cPXv25GBmROQVrube77//HnPmzAFg6uLw6aefokaNGvj666+LHcOhQ4eQkJCAEydO4I8//sC7775b7H0SEfmDMWPGoHv37tizZ4/N/LMvvnTJ+7Qu4Pbp0weAa3cYu/322/F///d/TtexFCQuXLhwyfERWZTKQsL06dOxYMECh8tHjBiB8uXLF7iq/fHHH6Nq1arYvXs3AODLL7/ESy/ZJoqNGzcaRYhXX30V999/P7Zu3erwtTIyMhxe8QlkN910E6pWrYqBA59y2z7dfUX/m2++weTJk43nixcvNhLsrFmzUK1aNVSvXh3169c31nnzzTftjrR78eJFPPvss0ahyXKryezsbIwcOdJ4nWHDhmH27NlYsmRJsePPzMy06WeXk5ODHj16oHfv3sa83Nxc4+crKyvLKIq8+eab6N27N26//Xakpqba3f9HH32EhIQETJw40eYP5PDhw/H000+7NABmTk4Odu/ejT///NPhOpMnT/baLeh+/fVXHD5cvG42RIEgu4i3zH3ggQeMwbz27t2LQYMGAQBWr15d7FjGjh2LDRs24JZbbsF1112HN954o8DfvbfeessmdxERBYo///zT6V0YispeawFXWiTMnz8fQ4cOdbpOSEgIACA1NRUpKSm4+uqrsX///ksLlEhVA2Jq3bq1Wlx77bV6xx13aIcOHfS7777Tf/75R1etWqVfffWVvvrqq3rixAldsGCBZmZmalJSkqampuqCBQu0R48eeurUKQWgAPSxxx7Tyy67TFVVx48fr126dNG8vDxt0qSJAtD+/fvrW2+9Zbzu7bffrgD0s88+05ycHGM/mZmZqqp69uxZBaDdu3fXJUuWaK1atRSA/vbbb5rf2LFj9d5771UA+sknnxRYbu3gwYP69NNPG6+TX05Ojqanp9tdtnHjRt20aZOqqh46dEibNGmiW7Zs0bS0NFVV3bRpk27fvt3ha7///vvavn174/nZs2d11KhRmp2dbbPeueR0Hdd/qSau26Z5eXnGe1O7nKi+GaO7r2xgzHPXFBQU5PZ9vvnmm3bnnzhxQqdPn248f/XVV433UFX1+++/VwD6xBNP6DvvvKMPP/ywAtAGDewf98yZM51+5qqqJ06c0CNHjjhcDkDvvvtunTFjhv722282+9+0aZPm5uYqAA0NDdVbbrlFBwwYoAA0JSXFZl1HP3/W67Ro0UI3b95c4Di+/vprzc3N1fT0dG3YsKF+8MEHxvY//fSTzbr57dmzRzdt2qQANCEhodD3w9revXs1Ly9PVVWPHj2qqlrgZ1LV9PN68eJFVVXjd79mzZr6999/64svvqgffvihnjlzRv/++2+7r7No0SI9d+6crlmzRo8fP2793qxXP8iLnp6s8y75J0vuPZds+zfgsbu7uCX3Dhw4UDdv3qzPPPOMXrx4Ub/99lubHP/1119rcnKy/vXXXw5jfPnllwvs1zp/qv6Xb9avX685OTl29zNlyhTdunVr8d80CljMveQvLLk3Nrqy7XlOyoFi597nn3++wLybbrqp0Jjyn29t3bpV58yZY7NO2bJlFYBu375dv/jiCwWgjzzyiDvfGkN6erqeOXPGI/sm73GWd32WJAF0BbATwB4ArxS2ftmyZbVSpUr69ttvF/oLeMUVVygAHTp0qEu/sMuXL3e6vEGDBvree+/prbfeasy77rrrjMdz5szRhx56SB944AEFoJGRkTbbt23bVv/8809VVb148WKBL3Lx8fGal5en+/bt008++USfffZZ40vR3Xffbaw3f/58PXHiRIEPuF+/fgpAX3zxRX3kkUd06dKl1h++AtDDhw/ru+++a/O6Bw8eNB7HxMTo6tWr9d5779W1a9fqmTNnjC95li+jL7/8starV08B6MSJE/WZZ54xihvWCfWaa64xtrMUEobVqVisk1lvTZYv265MtWrVUlXVCxcu6Lhx4xQwfUl1ZdspU6bojBkzdOLEicbPheWLsarq//3f/xnr7t27VwFo/fr1tV+/fpqXl6fnzp0r9DU+++wzm+fly5dXALpgwQKb+a+++qpmZWWpquratWt17ty5RhHCMlWqVEk/+OADh6/177//Go8ff/xxVVXt1KmTzTrWX/TPnz+vALRiRdPPRbly5TQnJ0dPnjypqqpPPvmkvvzyy3ry5ElNTU3Vc+fO6dq1a3XDhg360EMPKQB94403jJg6deqkIqLz5s3TYcOGaY8ePXT+/PnarFkzjYqK0rFjx+qNN95oN/aOHTsqAE1OTtYPP/xQv/nmG507d66uXbtWAegLL7ygADQ6OlpTUlI0OztbwZNZ8hOOCgnuyr0vvPCCVqhQQQFT8R2Azps3z+66586dsxvja6+9VmDd/EVS62VvvPGGZmZmFigOWpb//PPPdguHvpKWlqZTp061yeGBJDExUc+fP1+kbSz52NuYe8lf2Csk7N271ygkeOK899tvv3Uak2U9R89VVWNiYhQwXXCaM2eOAtBu3bp55D2ynBNfqpUrV+pPP/3kxohKvnPnzunmzZvduk9nedcnCRJAMIC9AOoBCAOwCUDTQrYp8i+cpQWBv0yzZs3S1q1b210WHBxcYF6VKlXsrrtixQp94okn9KuvvtJFixYVWF6hQgX94IMPdMSIEU7j+fTTT4t9TI8++qg+/vjjOn7MFwUSKvBfIaF2OfH5++/KFB0d7ZXXGThwoPG4Z8+eCkAbN26s77//vt53331ueQ3rYpezqUWLFgqYqt0hISEKmApH+derXr26w33MnTvX5vmdd95pFAnyT88//7zTfVm/N96crAuFziZzQYInsy5atmyZS3/U/v33X01NTTWeb9u2TefPn+9w/dzcXO3Zs6d+8cUXdpenp6fr0qVL/fLL3d69e922L3uFhGXLlrkt9w4bNsx43KZNG6frHjx40IghPT1ds7Ky9KOPPtLnnnuuwLpNmjTR1NRUPXTokO7fv99mWZcuXbR8+fLarl07Y39ZWVk267z88suX/J7l5ubanZ+enq7Hjh3TvLw8l39uzpw5o88884wC0B9++MHmPSiuixcv6oIFC3TLli26c+fOQtdfu3atrlmzxm4rSEcuXLiggKmgumLFCpe3s3wO3sbcS/7i6P6TBc574+LijEKCJ857q1at6jQmy3qWlsb2fk8t57nTp0/XCRMmKGC6GOMJl5onUlJS9J577nFrnjl48KDTVr4lheXvtDvPfZzlXZ8kSABXA1ho9XwogKGFbOOTLxecXJtioys7LSSsaVHH5zFy4uTGKWBPZlGE1mBVq1bVL774QgcNGqSjRo3SixcvanJyss6ePVuXLVumx44d0wMHDuiOHTt0+fLlqqqamZmpeXl5RvN0y3tm6WL1/vvv64IFC/T999/X1NRUnTFjhg4ePFgBaK9evXTv3r1G6y7A9OXM0hIrJydHJ02apCNHjjSucouI8ccuLy9Pz5w5o59++qneeeedCkDfeustXb16te7YsUNHjBiha9eu1by8PE1NTbW5qr106VJ96KGHtGHDhkYLMss+s7KyjFY7FkeOHLG5Ap+Zmanr1q3TdevW6R133KEpKSmak5NjUzTYtm2bcWzlypXTp556SvNbt26dpqSkOD0J+Oeff3TlypX6xBNP6L+b9xqFhAsXLhgt4jyRey3d9ZxNQ4YM0cqVK7u0vzp1Co9tzpw52qBBA922bZvN/PLly+uFCxd04cKF+ttvv2nz5s115cqVOnHiRKNr18CBAzUxMVGPHz+ueXl5ev78ef3yyy+Nn4uuXbvq119/rampqbpjxw6jIHDTTTdpvXr1dNSoUTpnzhwdNWqU7t69Wz/++GPNycnRY8eOaU5Ojk2rPstUtmxZVVXdvXu3li9fXqdMmWJ0v7IoV66ctmzZUtu3b290mdq8ebNOmTJF+/Xrp927d9dp06YVKMBMmjRJGzVqpKmpqTpkyBCdPn26Dh8+3PhZsV730KFDxutt2rRJf/75Z83Ly9PTp09rcnKyjhkzRk+dOmU0bbZM+/btM7Y7duyYvvnmm5qRkWH8zPfv31/btWtnrN+mTRvdvXu3Zmdn61dffaV333235uXl6fPPP68rVqzQAwcO6LXXXqs9e/bU0aNH6969e/Wjjz7SKVOm6O+//+7wZ/z48eOakJBg87toPsaAzb1FmTxdSJg2bZr27dtXv/vuO6P7HxVNjUp17Z737lq3xGPnvfXr11dV09+lL7/80ii+p6amanp6us26R48eNR43adJEH3zwQVVVjYqKKrBf6y7M+a1Zs8Zha7PCWPb/xx9/FOmL7dKlS23icwd37ktVtXPnzjp8+PBC18vKytKXX35ZU1JSivV627dvt/lb8ueff2qNGjUKdE+3HKclb7uDs7zrqxPZuwF8afX8QQDj7Kz3BID15sntv5Cc3DcVVkjwxBgJnDj5cArIk1kUsTVYUd+XuXPnqogY3ctuuOEGm+X5u9tYuqlYT/ZaZ1WoUKHQL6cfffSR0U2lsKlGjRrG4wcffFCnTJlSYJ2rrrrK5nnjxo111KhR2r59e923b59xfL169dK77rrLWK9SpUoKmK5MWeYNHDhQr732Wrux1K1bV++++26dMGGChoeH2xzzjz/+qD/++KMmJyfrkCFD9IsvvijQCs2Se7/96geb+aU993br1s3muaULYP4pf1dEV/fbo0cPbdmypd11GjduXGDe8OHD7a7bqFEjlwsvlsn65w0wjZVz//3328y74YYbtG3btvrdd98Z80aNGqXAf93c7P2uAaYxa7p162a00urRo4fT1nqPPvqohoWF2V2W//co/zRo0CB955139K677jLGFypTpow+/vjjCpiulP7444/aokULPXz4sCJAc29Rp9atW2tycrK6U1pamv7zzz86evRom89g9OjRl7Q/f2ztdSnuuusu7dKli/Hc1VZ0vjrvvf/++43urw8//LCqqgLQatWq2axn6ZJmPamq3ZzXpk0bu8eYnJysALRDhw4249rs3btX+/fvX6DAnp/1a0yZMqXQ99Qi/7hf+aWlpemqVauM5/v37ze6QFi62m7cuNFuLEWRkZGhR48etVtIsexv3759Nr8L69ev1/379xtf5C3jq1m6/VrLzc11edyf/PG/8sorCkBHjhxpdz1L/vjpp58ctjbbv3+/3fmWwvvs2bM1KSnJad711cnsPShYSPikkG088gvprskycKKjqUuXLrpgwQL98MMPCyyzjDvQuHFj7dGjhzH/2WefLbDuhg0bFDA1b0pLSzMG+cs/jRw5Uq+//nqH8QwYMMBmDAlL83bLZLlCaD19/vnnNs8nTJigEydO1JEjR+riX5YHfCHB1S8h7pqsP+smTZpo7dq19fjx48YXEUeTZaAcd07PP/+88QWladOmRRrIcvjw4frwww8bf7TatGljc8XKerr66qsLnAQ7my6//HKNjo622zTaXoyxsbF292P9Bc3edMstt7j0s3DnnXdaPreAPJlFEVuDefP3gdOlTSziciotk/nLU0Dm3qJOtWvXVgA6duxYnT17tsMuXPbs2bPH7tVPR+MEvfzyyzp79myH+ztx4oROmzbNZp6lZU9SUlKB9bOysvTs2bM287Zu3arr1q3TiRMn2v1S9vbbb+svv/zi6iGqquqcOXO0Xbt2DgdnVTV9IRo7dqwmJyfrzp07de7cuXr69Gnt3r27fvDBBzbnDJb1rZ874y+513qMqsImVbV7PhQbG6vdunXTU6dOGcd3/vx5m/Ft6tWrZyyznDN169ZN27dv77CoZP0a7777rqqauhhUrFhRN2/erHl5ebpt27YCn6u9uFVNP1vDhg3Tzp07KwA9fvy4/vHHH8Z606ZNM8byqVu3ro4YMUJfeOEFffHFF136XC2ttizsFaB37typf/75p828UaNG6Y8//lhg3Tlz5ujUqVMVMJ3n5+/WaHl/83ddy8vL088//9zm98iyz2HDhmlGRoYxIOeNN95oMxi/dUx79uxxeNyWcfDGjBljvO/PPvusfvnll/rxxx8b25nHjvO7QsIldW1444037P5irFq1SkeOHGk8r1atms6cOVOTk5M1JydHX3rpJeOHOCEhwVjvoYce0urVq9tcNWvVqpXNDyVgGojwwIEDNlcU9uzZo4888ogC0M6dO+vp06dttrEkWctk6ZNpGSTPckXA3odrPT81NVUBU1X/6aef1ry8PD1w4IDND/ry5ct1/fr1OnnyZP3tt9907dq1mpubqxs3brR5X8aMGWP0Tf/mm29U1dS/8+uvvzYGe9y2bZs+/PDDmpKSoomJiTYj9a9YsUIB0wB5ixYtskneln66Tzz8lN2E+ksz1wYh9OXUu3dvh8uGDBlSYN7QoUO1S5cu+vvvv+tTTz1ld5Rde9N9991n9B+eM2eOkYCtE/GBAwcUMBV4zp8/r//8848mJibqe++9Z/xMWBLF6dOn9dChQzZXWQHo2bNnjWLFuHHjdMeOHUafs59//tlYb9KkSUYTb0t1MiUlRatWrWqzv5kzZ2qzZs1s5lknrxkzZigAve222/Sjjz6yWe+tt97STp06GT8zmzdv1jFjxtgMzPnuu+9qbm6uLlu2TN999109evSoTZNL4L8rceXKldPc3FytVKmS9unTx3hfLXdTSUhI0JtuusnY9+TJk23iad68uZEXxo0bZ7yGpSB46NAhzczMNK6y7du3Ty9evGj8HiNAT2bhQmswBGBLsMsvv9zjr2EZP8TXU/44CjuZDYTcy8nzk6MxawJhyjduUEDm3kvI1QXeh3///df4W3XixAkdMmSI3SvCgKnbkDXLAMfOpunTp+uPP/6oaWlpmp2dbfx9t3xptHR72bp1q3EBbN26dZqXl6erVq3SJ598Up944gnj76j1OU3+z9NezIDpvGXixIl2v5j++eef2r59e/3hhx9stklOTta0tDT98ssvC2y3ceNGBUxjIFl+B95//327x1+lShU9dOiQ8Ty/rKws/fzzz40rzYGYewtrIWTp6vLTTz/ZvRh56tQpPXbsmDG2l2U6duxYgfcr/+c+fPhwzczM1KeeMn1PeP75542r9XPnzjW6RNqLa+DAgbpz584Cg8YnJiYW+T3I//NhfR5rGVw7NjZWd+zY4XKLtS5duuhll11WYP5TTz1lc8c3y3toudNe8+bNFYCuWbNGX331VaMLqOV76P3332993mlMf/zxh80FtsjISF28eHGB9fIf9//+9z8FTIMoW/9N2LNnj825hXULs0aNGin8sJAQAmAfgLr4r3ltM2fbXH755ZqTk6NffvmlNmrUSJ988kn9/fffC1RhWrRoYfeH2ZJsLQNHbd++3fhwLD+81l9cLG/gJ598YtP/xDLfkqwWLFigaWlpxij3QUFBevToUf37778d/uCuXLlSjx8/rg0aNLA7wMnkyZNt7rxg6XN8qQ4dOmQ0ATp79qy+9NJLDm8XmZ95hHq99tpr9fz581qjRg2dMWNGgfUshYSkw6dtBon058EW8zfrtHyxtDe9+uqrWr16da1bt67dz1RV9eTJk9q0aVPdtGmTrl69Wr/++mu7+3riiScKfd/z8vJ0woQJDpsdrVixQufNm2czz9LCpEmTJsbtfiz9sb/++mtVNTWjOnXqlK5bt04B2/7l+VkndMsJhOVLu733YMuWLcbx5eXl6aFDh4w+1c6uGBw/flynTp1ayDtiGggtOztbjx07ZlwFsex33bp1Ri44ceKEXrx4UdPT021GFV+9erW+/fbbOmrUKKNfYU5Ojs3vVkZGhq5Zs8Z4vmbNGh00aFCB3z9nSdWfJxSxNZh183zLVL9+fa1UqZI2btxYJ0yYoB999JEOGDBAFy9erNOmTdNvvvlGw8PDddOmTTp+/Hjt0KGDAqbmz2fPntWtW7cqYLoDwFdffaWZmZnGvqtWrWq33/xDDz2kH3/8sb799ttas2ZNbd++vc0f+O7du+vEiRN19OjROmjQIJsCFWAqEPfu3Vvfe+89vemmmzQ5OVmDg4M1ISFBd+/erar/3b4XMFX49+3bp3PnztVJkybp0KFDNSsrS+fOnatHjhzR8+fP6+LFi3X+/PnGXVQmTJigf//9tz755JP6wAMPaJMmTXT69On60Ucf6cqVK/XChQvGlQnrqVevXpqTk6OHDh3S2bNn6/Dhw/WGG27Q7du365YtW4yfuezsbOPvmHWh2nIyu2rpX/rkk08GRO4t6pS/Kbaz6eOPPzZyb3h4uL7xxht68uRJTUlJ0fHjx9usa7nqazmZszddeeWV+uWXX+p1112n8+fP18cee8xoipqYmKj9+/e3Wf/FF1/U0aNH27Qc27hxo27cuFGXL1+uy5cv199//91mmyVLlihgugjSr18/jY2NLXAx4t1339WKFSvqlClTtHz58vrRRx9p69at9ffff9eDBw/qP//8U+BvWnp6uh4+fFjPnTunx44d00GDBumGDRv0gQce0NWrVxvNlvNPeXl5unTpUn3mmWeMFnKOTvAB6E8//WS0YmzevLlGRkbqyJEj9Z577rH5YjZz5kzt1auXPv3009qhQwc9duyYHjp0SHNycjQtLU0PHDigv/32mx46dEgnTpyo77zzjq5cudKScy1TQObeS8jVdt/rPXv2qKoaxRV7A9Jaf46TJ0/WjIwMtZfLnU1ly5Y1BvZr27atAtDrr79eJ06caLNe48aNHRaprMfpsJ7frFkzzcvL08zMTN2+fbvNz6HlHGPKlCm6evVqHTZsmHGRwnqyfCECTH9bLMWOSZMmaV5env7+++96ww03GL9H1hdB7LW4tUzffvut8XjgwIHGGDlHjx41BrEbMWKEnj9/vtBCQiDm3uuvv95pPnQ05e8Ksnv37gLrvPbaa9qkSRPjuXWr0mHDhumbb75ptzuGs8n6DmeuTo899pgmJyfr9u3bFYC2bNlS58yZU6xiq/nLdoHpmWeeKXAhCzBdgFZV4yKI9bnBN998Y3Nx5MYbb7RpWQBAf/vtN2NMn/yfg6MYDxw4oCJF/5msX7++wt8KCeYkeSuAXTD1132tsPVdGXjmyJEjBe5NnV9ubq5NVdeRyy67zO6X/NWrV+uECRPsbvPDDz8YSd66qZGj+2unpaUV2r/IH+zevbvQwXisRw7PycnR9evXK/BfQh3dwHlzfVenH36w7QdsfdXZMoWEhBj9K51N+Zsh5e+/bZ1U3nvvPc3MzNTMzEzt0qVLgWZ+9li+MF177bW6aNEi/eabbxSAjh8/3l0fjY3MzEz9/PPPbX6mHnzwQQWgv/76q826lj7eAJzu88MPP7TpZ7Zz505t3bq1jh49WidPnlxg/YULF9rcRuzkyZO6Y8eOSzwi/+UsqfrzhCK2BmvdurWeOHFCU1JSNCkpyehzl5eX53Dke1W1+RnMycnRqVOn2txLOjs726Y4c91112n37t2N55s3b9a7775br7rqKrtXr1RNrbV27typ7dq1s+kraTFr1ix955139LbbbrNbyEpLSyuQ1/73v//p33//7fC43OHAgQM6depUHTVqlG7ZssWmKWlRHDp0SHfv3q0zvv/J5q4Nu3fv1k8//dTtufdSpqZNm9q0vnM0Wbecs542bNhgfGm3nl+5cmWbz/To0aN66NAhm7//SUlJBZpX5+bm6pgxY4xmqV999ZW+8847eujQIV2yZIm++uqrum7dOt26davecccd+tJLL7n0OVj/HbLu137w4EGdPn263e327NmjFy9eNG55a93K0OKPP/7QyZMn6yuvvOLSxYRPPvlEAWj//v3tNjm35+jRo/rtt99qfHy83QEQT58+bRTbfv31V92+fbvNnTwGDRqkqqY7TMyYMcNuXhg1apTec889xbogMmXKFMsV0kDNvUW65bmj35XvvvtOT58+bRRoFyxYoFdddZXWqVNHH3/8cf3qq6/c+jtsGRj0UradN2+eDh06tEBriAoVKmiZMmUueb+FTdOmTSvQotJ6srQmtje9+eabNs9Pnjxpcxt2y3TFFVcUWkjwZe719nTrrbfq0aNH9cCBA3rbbbfZvQuWswKOK38n7E3+dnc+e5N18cR6WrBggd2BL12ZypUr5+3j8L9CQlEnX9wKpzh/9DIzM7VNmzY2LQtKMnu3IAPc31csf2Xa+gqcZWrVqpXx+s4mC8sfnF9//dVm+bfffmv0q/r000+L/J7k5eXpO++8Y3O7GUszQG9JSkrSt99+u8AXKcvVpUaNGnktlpLEWVL15wlFbA3GW5D5P3u5V1XdmnsXLlxoPHZ0W2LryTLmSnJysp48edLhehs3bjRG/Le+anP06NECX2itt3vssceK/b7lLzIU16pVq/TDDz906z6L6ty5czp48GCb26h6QnZ2tp45c0b/+OOPYo9EXlSBmHvhpVueczJN5iuoHp9qVqnvF2MkBMrk6i22Ofnl5DDvhoAcEpFL3jYsLAzr1q1zYzSBJzIyEjVqxAE457Z9BgcH2zyPiIgAAFx//fVo1qwZPvvsM2OeqzIyMgAAtWrVMua99tpruP3229GtWzdkZWWhX79+RY5VRDBs2DCbeW3atCnyfoqjcuXKeOONNwrMDw4Oxh9//IF69ep5NR7yLVXNEZFBABbCdHI7SVW3+Tgs8gNPPvkkvvjiC+Tm5hZYdtNNN+H3339HlSpVUKlSJezduxdt27ZFv379MGnSJJQrVw7nzp3D5MmTcfvtt6NChQo22996661YsGBBgf22atXKePzAAw+gb9++AIBq1aqhWrVqNusOHToUqamp6NixI7p161bs4y1Xrlyx92Ht2muvxbXXXuvWfRZVTEwMPvroI4+/TkhICMqXL4/27dt7/LVKiKsA7FHVfQAgIj8A6A5gu0+jKqH27t3rlde5kJbmldcpKez9DaDAx0ICeUxqaipw9hAw7gq37O/111+3KST8/PPPWL58OQDgtttuQ+vWrW0KCfPnz0dKSgoeeughp/u9ePEiACA2NhYff/wxbrjhBrRo0cJYPmbMGLfE7294Elg6qeoCAPyLXsI1atQIwHGX14+OjkZ4eDjS09PtLu/YsaPxuGLFiti7dy/q1q2LMWPGIDg4GFFRUQ73/csvvyA1NRVff/01nnvuObvrBAUFOY3v/fffL/wgiPxTdQCHrZ4fAdA2/0oi8gRMg90SEQUE53+5iYohJCQEIeYv/vcdOFjs/b377ruWJn+444470K1bN6OwkJubiyZNmgAABgwYAMBUXLj++usL3W9mZiYAoHz58nj66adtighERIGobt26AIqWey351VpKSorddevVqwcRQdmyZZ0WESxiYmJw+eWXG8+tCxMWw4cPx9KlS12OlyhA2GveWuCXTVUnqmqCqiY421mNGjXcFhgV7uqrry4w77777it0O3ec9waSDz/80NchlHq1a9f2+muykEBe0TA83C37ufLKKwHA6GpgOVm2NIVVVdx7773G+qGhoTbb33jjjQX2uWrVKgwaNKjIXSKIiPyVpSjgau5VVeTl5QEA1qxZY8zP302hODp27Ijx48djy5YtmD9/foHlr732Gjp16uS21yPyE0cA1LR6XgPAsUvZ0b59+/DXX3/ZzOvatSsA4MEHH7RptRkZGXkpL1EshXUJFhFMmDABWVlZdpdbx++s+9HNN99s8/z55583Hh88eBCqipdeesmY99VXXzmNy5F27drhzz//xKhRo2zm33777YVu667zXm9r0KCB3fnNmzd3ut0TTzyBTZs2Yf/+/Zg1a5bddUwt5QqKi4srWpDFULduXb8uWH/55ZeXvG2ZMmUcLnPlwqpFUVpis5BAXjG8ahW37KdmzZpQVXTv3h2AKXH99NNPDrsv5D8JXrJkCQDbAkP79u3xySefuCU+IiL/YCokFJZ7LcVYa55qlSUiGDBgAJo3b+5SKwaiEuJvAA1FpK6IhAHoBWDepeyobt26qF69OtLS0nDnnXfiyy+/xJtvvgkAuPPOO23WrVChgnGuM3Xq1CK9To8ePQDYb/0QHx9vPG7Xrh0++OADo2ixZMkSm/HB0tPTkZmZiRkzZhhx9O/fH6Ghofj++++xZMkS/PXXX7j11lsBAKNHjzZew9kX10cffdR4HBQUZHM13DLe1YgRI4x5lharTZs2tWlllf89mzRpkhHLp59+imXLlgEAhgwZYrNeQoLTRiMA3Hfe66ry5cu7ZT+TJk1CRkYG/vnnH5v5t9xyCwDguuuus7tdmTJl0KJFC9SpUwd33XWX3XW+//5743GdOnXQrFkz9OzZE4cPH7a5CGjPiRMninIYDgUHB7tUsHZ0nO7QoUOHAt9PLN9D8o8BNGPGDJeLAPZaFVo4KuIABQsQzzzzjEuvB7CQQH6uU6dOWLduncPBc4KCgtC9e3eHVfDIyMgCv1gnTpxAUlKS22MlIvIXERGuXY20tNJSVTRu3BiAqVsaEbmHquYAsAxyuwPAj4UNcpv/Cm27du1svgCXKVMGc+bMwaOPPop27dohOTm5wJe3WrVqYdeuXVixYgViYmJcinXRokU4duwYZs+ejfnz5+PPP//EPffcYyw/ePAgNm3ahF69emHnzp1YtWoVXnnlFZw4cQIjR47E9ddfjzZt2mD79u3Ys2cPIiMjERYWhp49e2L37t3o1auXsa8+ffrgxhtvRNu2bY3BVcPCwrBr1y78/fffmDNnjtESoH79+vjiiy9QqVIl9OrVC/fccw+ysrKwZs0a7NmzB4CpRdPrr79uczydOnVCw4YNUaWK6Ut9//79UaFCBbRu3RoAMGXKFLz44osATFdsH3nkEaMoUrlyZZuWqklJSUhMTMT//vc/NGzY0KX301uef/75QseZcVXFihURERFhMwA5AFx11VXIysrCypUrUa1atQItFwprjbJt2za0bNnSeL5//35s3boVM2fOREREBKZPn+50+0qVKuHaa6/F22+/bcx76aWXjGLXSy+9hA8++ACXXXYZHnzwQQDA6tWrMXbsWJv9WD7TpUuX4uuvv8a2bdsKDOQOAO+8847N8y1btmD8+PF47rnnbH7XunTpAsD08zxu3DjjZw0Azp8/j3HjxhXY9+zZs5GcnGw837p1KwYNGgRVReXKlW3Wbdu2rTEoPGAqCKxdu9beW4SaNWvanQ+YLqDef//9uPbaawu0VurXr5/N512kmw34+rY4rk68DZl/c3QLMk05UKzb4LjL4MGD9bvvvnPb/qh0QwDeguxSJuZd/+co96bsS3Qp9z733HMKmO7xnZSUpPPnz1dVdXsOJnKH0pR7rX9PV65c6dL7061bNwWg/fv31wMHDhjz8/Ly9K+//jL2N3r06CKdc40dO1YXLFjgUgyXYuDAgQpAp0yZUmDZrFmz9MyZM6pqurX6pd5COzk52Xh84cIFY58XLlzQzp0765YtW1RV9Y8//tB27drpsWPHnO4vNrqy3ds/9r/vFq/f/vH48eMaGxvrdJ0ff/xRly1b5nD54MGDdebMmTbvkfXyefPmGcssn0F2drY++OCDesUVVxR4f/bs2aMff/xxgZ8tZz9rLVu2tBtbmTJlbNaz3sfUqVMVgO7YscNYnpWVpfv37y+wfpMmTfTHH38s8Lrnz5/X06dP69tvv60ANCIiQletWuXwdyMtLU0PHTqk77//vqampmpqaqpmZ2cb+wKgr732WoHXt0y5ubnG/JdffrlAPPlf8+abbzbmXXPNNXr69Gmb/WVnZ+vvv/+u33zzjcPP99lnnzX2l5eXZ7Ns7dq1umfPHpvXzbc9b/9IvjU6+aRPX98bt8QiIvIXFczNXAvLvdbNYStXrozbbrvNg1ERkatatWqFxMREAKaLfq6YPn06Dh8+bLQushARtG3bFvPmzUNqairuuusubNq0Cd988w0A4IcffnA6UFtRmjpfinfffRfR0dF2m7dbX/0NCwu75NewbuURFRVldK+KiorC4sWLjWXt27e3GSemKLp3747XXnsBmHWbR857x48fj+PHj6N3796Ii4tDbGyscTXd+mckLi4ONWvWxMaNG9G/f3+cOHEC1157LQ4dOuRw3xUrVkTPnj2N5xEREYiOjkaa+TaX4VZjPliuWIeEhODbb7+1u7/69evjtttuK/Cz89hjj6FixYp2t1mxYgVOnDhh8/N733332YyBAQDLli0z/nb17t0bd9xxh03z/NDQUNSpU8d4vmjRIhw6dMimS4y16OhoAMAbb7yBW265BRUqVHDawqNMmTIoU6YMhg4dandf6enpdscoeeihh7Bx40Zj345+r0eOHGm0mgGAyZMnY9q0aRg8eDCefvppxMbG2qwfEhKCjh072rTqmD17ts3vjqMWB5YYTp8+DaDgHd2++uorh+8bwNs/kpf8knrepfXS09Oxb9++Qgd1ISKiwhWWey0nUPlPaFJSUorWvJGI3GrDhg0YM2YMhgwZUqCZuSNRUVEFigjWrAcJ/PrrrzFw4EDs2LHDpbsQeFJsbKzNmAaBYPDgwUC+WsHTTz+NmjVMzctdPe8tir59+7o0vkzt2rXRu3dvbNy4Eddcc40xjtjBg//dSWLGjBk23VZycnJs9hEUFITz588b41rUq1evyPHaG8T8iy++cLh+uXLlCgyy+dhjj+Gqq66ymdehQweb584GGQT+637gijZt2hiPt2/fjtDQ0CJ3G8lfRAgNDUV2dja++eYbl/6uWrrbWFSuXBnPPfecze2TVbXAvpo1awbA9LPZo0cPTJgwAdHR0QgKCip0DIqKFSti1qxZaNq0qc38fv36sZBAvrekfn00/GdPoesFBwcbvwhERFQ8heVee1ezAPferYGIii4oKAiDBw9G3759HV7BLa42bdrYfHEi1z3zzDOY8rptywXrvvaunvcWRbiTO0FY5/Dg4GAMHDgQtWrVMgYnB0yDRA4YMAAvvPCCzUCa9913HwYNGmR3v3369EHv3r0vqbDsjjuHODtmT7MM0llcW7duxb59+zxenG/evDlWr15t3OGuf//+TtfPPx6SdQuG77//3rjQ4HQflxAnkcfYG/CEiIjcLy0tzbjVlKtNp4nIe0TEY0UEcj93DXjoiLNz5Jo1a+Ls2bMATD83kZGRNi0OANMXx/HjxwP4L+e/++67BQapzO9SvwBXqFABjz32WLHugODqQKH+rFGjRk7vmnCpNm7ciK1bt9rMu+aaa1za9uzZs04/1z59+ri0H961gfxC3759kZubayTJ8uXLO7yXLRERFV9oaKhxP3ZfN20mIgp07r4Y5ujW5vb8+uuvePLJJwG4VhgWEahqoUWE4vriiy+KdBwAjAI3AJQtW9bdIZUYrVq1wgMPPHBJ25YrV84tRRoWEsgr1lxId7pcRGwquadPn8bOnTs9HRYRUYnmLPcGBQXhsssug6q6fBWDiIjsCw0NNR4Xdt7rim7durm8bvXq1dG3b18AQF5eXrFf25ceffRRJCYmYsCAATaDJpL/YdcG8ophScedLs9fPfV08zAiotLAWe5lniUiKr6jR4/i888/N403cdZ0Z4TCzntdUdQuZ5am6iWhq1rLli2Nbhjkv3gWQV7xbpWqTpeXhKRHRORvnOVe3pWBiKj4qlWrhrffftsmpy67+26nd9Aoqp9//rnQdSxdgj19u04iC7ZIIK+4uozz29WwkEBE5H7Oci8LCUREnpG7cSNq165XrG661ufG119/faHrV6xYkefT5FVskUBERFSCsWBAROQZsbGxDpe5M/fmv1UfkT9gIYGIiKgEe+yxx3wdAhFRibRw4cIib1OrVi2X1rNuXcBCAvkjFhLIKzrv3QsA6Nq1q93lbIpFROR+DZYsMU5ArQsK+/bt81VIREQlRlxcnN35DZYssdsioUyZMpg1a5ZL+2YhgfwdCwnkFbfFmO4Dyya2RETec27+L8YtyZo1a2bMr1u3rq9CIiIq8c7N/8Xul/8ffvgBCQkJLu3DOk/zLjvkj/hTSV4xOL6Sr0MgIip1kseMNgoJ2dnZPo6GiKh0SB4zGhMmTED//v1t5tsrCMydOxdvvfUWNmzYYMzbtm0b2rVr5/E4iYqDhQTyKkctEti1gYjIMyyFhJycHB9HQkRUelSvXh0TJkywmWfvPLhatWp48803ceWVVxrzmjZt6vH4iIqLHW7Iq1hIICLyLkvzWrZIICLyLXstEqzPjT/88EObbmhE/oyFBPKK148nAeAYCURE3lTl3XcRun4XABYSiIi8pcq779qdX1gh4fnnn/dYTETu5rGuDSLylogcFZFE83Sr1bKhIrJHRHaKyM2eioH8x+7MTAAsJBAReVN4w0bs2kBE5GXhDRu5vK6zgRTLlCnjjnCIPMLTYySMVtVW5mkBAIhIUwC9ADQD0BXAeBEJ9nAc5GPT69QG4LiQwNFoiYjc72Cv+3DttdcCAK6//nofR0NUMonI/0TkXxHZLCJzRKS81TJePCuFDva6z+784OCCX3mcXWTbtWsX1q9f77a4iNzJF10bugP4QVUzAewXkT0ArgKwxgexkJ+wl1iJiKj4rrvuOqSmpqJs2bK+DoWopFoMYKiq5ojICABDAbyc7+JZNQBLRKSRqub6MFbyIXu3hHRWSKhWrRqqVavmyZCILpmnLwMPMldnJ4lIBfO86gAOW61zxDyvABF5QkTWi8j65ORkD4dK3sAWCURE3sciApHnqOoiVbX0HfoLQA3zY+PimaruB2C5eEalVFFbJBD5s2J9exORJSKy1c7UHcBnAOoDaAXgOIAPLZvZ2ZXdIftVdaKqJqhqQnx8fHFCJR+bn5oKgIUEIiJvirn1Nl+HQFTa9APwq/kxL56VUo5yb2GDLRIFkmJ1bVDVzq6sJyJfAJhvfnoEQE2rxTUAHCtOHOT/xhTyR5GFBCIi96v0/GBfh0BUIojIEgBV7Cx6TVXnmtd5DUAOgO8tm9lZ3+HFMwATASAhIYH3xA5wjnKvva4NPAemQOXJuzZUtXraA8BW8+N5AHqJSLiI1AXQEMA6T8VB/mF8jRq46aab2CKBiMiLDj85wNchEJUIqtpZVZvbmSxFhL4AugG4X1UthQBePCulrHPvVVf915vF0rXh999/N+axRQIFKk9+exspIltEZDOAjgAGA4CqbgPwI4DtAH4D8BQHnSn5GoWHY+HChSwkELmBiNwjIttEJE9EEvItsztCuIi0NufkPSLysfDMpVTI3LPb1yEQlXgi0hXAywDuUNV0q0W8eFZKWefelStXonZt093LLOe7HTt2RLly5QCwkECBy2Pf3lT1QVW9XFVbqOodqnrcatl7qlpfVRur6q/O9uMOwcHBaNWqFZo1a4aWLVvio48+Ql5eHgBg+fLlKFeuHFq1amVMS5YsAQD89ttvaNy4MRo0aID/+7//M/aXmJiIdu3aoVWrVkhISMC6dfb/JogIhgwZYjwfNWoU3nrrLc8daAD65JNPALCQQFREWwHcBWCl9cxCbq/7GYAnYDqRbWhe7lG+yr2W17VM1vsgIvKAcQDKAlgsIokiMgHw3cUzX+TeOXPm2OyzVatWCAoKwq+/evw03++Fh4cjOjoaQNHv2kDkz3xx+0evi4yMRGJiIgDg5MmT6NOnD86dO4e3334bgOnWWPPnz7fZJjc3F0899RQWL16MGjVqoE2bNrjjjjvQtGlTvPTSS3jzzTdxyy23YMGCBXjppZewfPnyAq8bHh6O2bNnY+jQoYiLi/P0Yfq14NiKAP5Lltdeey3uv/9+ZGVlAWAhgagoVHUHYPfkw+7tdUXkAIAYVV1j3u5bAHfivwHBPMJXudf6dUs7S+4lIs9R1QZOlr0H4D0vhuOT3NujRw/06NHDeD5x4kR8//33uPnmm1Ea5c+9OTmmm3rwrg1UkpS6b2+VKlXCxIkTMW7cOPzXha2gdevWoUGDBqhXrx7CwsLQq1cvzJ07F4DpFz7VfBeCc+fOOby/a0hICJ544gmMHj3a/QcSYOr+OB3Af8ny6aefxpNPPmlUyFlIIHILRyOEVzc/zj+/AE+NHO7N3Ev/seReIiqdfJF7d+3ahXfeeQdTpkwpted3+XNvxYqmwkJ4eLgxz/J5lNb3iAJfqWiRkF+9evWQl5eHkydPAgBWrVqFVq1aGctnzZqFo0ePombN/8bHqVGjBtauXQsAGDNmDG6++Wa88MILyMvLw59//unwtZ566im0aNECL730kmcOJkCcnvwtKj43zCgkWJInCwlE9rkyQri9zezMUyfzC8704Mjh3sq9GRkZNvsdOnQo7rvvPnceSsCw5F4iKr28ed6bnZ2NPn36YNSoUahVq5ZnDigA5M+9M2fOxJw5c1CvXr0C67JFAgWqUvvtzboqe9111yExMdGY6tevb7dqa/lF/+yzzzB69GgcPnwYo0ePxqOPPurwdWJiYvDQQw/h448/dv9BBJAzU74FUDBZspBAZF9hI4Q74GiE8CPmx/nne503cq+lWa9lKq1FBOC/3EtEpZu3znuHDRuGZs2aoVevXu4/iACSP/dWrVoVAwcOtJmXnm4alzMqKsprcRG5U6n89rZv3z4EBwejUqVKDtepUaMGDh/+r4XwkSNHjKZckydPxl133QUAuOeeexwO+GXx3HPP4auvvsKFCxfcEH3JYPmDlZtrGnOIhQQit7A7Qrh5sNvzItLOfLeGhwA4K0h4hLdzLxEReS/3Ll++HLNmzcK4cePcGH3JZRk3wXL3BqJAU+q+vSUnJ+PJJ5/EoEGDnDYlatOmDXbv3o39+/cjKysLP/zwA+644w4AQLVq1bBixQoApvvANmzY0OlrxsbG4t5778VXX33lvgMJUPm7Nlj6irEaS+Q6EekhIkcAXA3gFxFZCBQ6QvgAAF8C2ANgLzw80GJ+vsi9RESlnbdy75kzZ/DII4/g22+/RdmyZT1zMCVUZGSkr0MguiSlYowES3/Z7OxshISE4MEHH8Tzzz9vLM/fV+z111/H3XffjXHjxuHmm29Gbm4u+vXrh2bNmgEAvvjiCzz77LPIyclBREQEJk6cCAA4duwYHnvsMSxYsKBADEOGDCnVFdoa4z8DADzzzDOYPn06brjhBgDAgAEDcPr0abz88su+DI8ooKjqHABzHCyzO0K4qq4H0NzDodnwVe7NP0ZC165dS+0tIC2516J58+bo1q2bj6IhIm/wRe6dMGECTp48iQEDBtjEUlrHqMmfe+353//+h3HjxnGMBApY4mwEV3+SkJCg69ev93UY5EDqqQxMeX0NHhx+NWLirCqrZw4CY1vg4i2zENG2s+8CJHIjEdmgqgm+jsPTmHf9H3MvlSbMveQvmHuptHCWd0td1wbyjSMDBxS+EhERuRVzLxGR9zH3UmnAQgIRERERERERuYyFBCIiIiIiIiJyWcCMkSAiyQAO+joOszgAp3wdRDEEevwAj8FfBPoxXGr8tVU13t3B+BvmXbfjMfiHQD+GQI8fYO51irnX7XgMvhfo8QOl9xgc5t2AKST4ExFZH8iD/QR6/ACPwV8E+jEEevylSUn4rHgM/iHQjyHQ4wdKxjGUFiXhs+Ix+F6gxw/wGOxh1wYiIiIiIiIichkLCURERERERETkMhYSLs1EXwdQTIEeP8Bj8BeBfgyBHn9pUhI+Kx6Dfwj0Ywj0+IGScQylRUn4rHgMvhfo8QM8hgI4RgIRERERERERuYwtEoiIiIiIiIjIZSwkEBEREREREZHLWEgohIgcEJEtIpIoIuvN82JFZLGI7Db/X8HHMXYVkZ0iskdEXrGa/7R5/jYRGelg2wLHV5TtvUFEJonISRHZajXPrz4DZ0SkpogsE5Ed5vfyWfP8QDqGCBFZJyKbzMfwtnl+wBwDAIhIsIhsFJH55ucBFX9p4u+5t6TnXXMszL0+xtxL3sbcy3Pe4gr03FtS8i7g+dzLQoJrOqpqK6v7br4CYKmqNgSw1PzcJ0QkGMCnAG4B0BRAbxFpKiIdAXQH0EJVmwEY5WQ3+Y8PRdze074B0DXfPL/5DFyQA2CIqjYB0A7AUyLSFIF1DJkAOqlqSwCtAHQVkXYIrGMAgGcB7LB6HmjxlzZ+mXtLSd4FmHv9AXMv+QJzr+98g8DOu0Dg596SkncBT+deVeXkZAJwAEBcvnk7AVQ1P64KYKcP47sawEKr50PN048AOl/K8Znnu7S9F4+zDoCt/vgZXMKxzAXQJVCPAUAUgH8AtA2kYwBQw5w0OwGYH+g/RyV98ufcW1ryrjkm5l4/mZh7OXnp82Lu9f1nUGLyrjnmgM29gZp3zTF6PPeyRULhFMAiEdkgIk+Y51VW1eMAYP6/ks+iA6oDOGz1/Ih5XiMA14nIWhFZISJtAEBEqonIAqv17R0fHG3vR/zpM3CZiNQBcAWAtQiwYzA3j0oEcBLAYlUNtGMYA+AlAHlW8wIp/tLGn3Nvac27gP98BkXC3OtTY8DcG0iYe/0v9/rL+19kgZp7S0DeBbyQe0OKs3Ep0V5Vj4lIJQCLReRfXweUj9iZpzB9thVgalLUBsCPIlJPVY8BuNVq3QLHp6ornWzP+4VeIhGJBjALwHOqmipi76PzX6qaC6CViJQHMEdEmvs4JJeJSDcAJ1V1g4h08HE45Bp/zr3MuwGEudd3mHsDEnMvc69bBHLuDeS8C3gv97JFQiHMSQiqehLAHABXATghIlUBwPz/Sd9FiCMAalo9rwHgmHn+bDVZB1M1Ki7/xg6OD65u70P+9BkUSkRCYUqm36vqbPPsgDoGC1U9C2A5TH34AuUY2gO4Q0QOAPgBQCcR+Q6BE3+p4+e5t7TmXcB/PgOXMPf6HHNvgGHu9cvc6y/vv8tKSu4N0LwLeCn3spDghIiUEZGylscAbgKwFcA8AH3Nq/WFqe+Pr/wNoKGI1BWRMAC9YIrvJ5j6xEBEGgEIA3DKekMnxwdXtvcxf/oMnBJTCfYrADtU9SOrRYF0DPHmqixEJBJAZwD/IkCOQVWHqmoNVa0D0+/I76r6AAIk/tImAHJvac27gP98BoVi7vU95t7Awtzrt7nXX95/lwR67g30vAt4MffaGziBkzFIRT0Am8zTNgCvmedXhGnwit3m/2N9HOetAHYB2GsVYxiA72BKkv/ANPooAFQDsMDZ8Tnb3kfHNw3AcQDZMFWNH/W3z6CQ+K+FqendZgCJ5unWADuGFgA2mo9hK4A3zPMD5hisjqUD/ht0JuDiLw1TIOTekp53zfEw9/r+GJh7OXnzM2Lu5TmvO44hoHNvScq75rg9lnvFvFMiIiIiIiIiokKxawMRERERERERuYyFBCIiIiIiIiJyGQsJREREREREROSyEF8H4Kq4uDitU6eOr8OgQpxIvYi4qDCcPnoBFauXQXBIvlpVbhZwYhtQuRkQHOabIImKacOGDadUNd7XcXga827gOHH2IuRctv28CzD3UonA3Ev+prDcm3PiOEJyk5h7KWA5y7sBU0ioU6cO1q9f7+swqBB1XvkFK17ohCmvr8GDw69GTFyk7QpnDgJjWwDP/gxUqO2bIImKSUQO+joGb2DeDRwtXlyA/ucj7OddgLmXSgTmXvI3heXePa0bosHt0cy9FLCc5V12bSC3al49xtchEBGVOo2rRPs6BCKiUqew3BveoKGXIiHyPhYSyK3mP32dr0MgIip1vurbxtchEBGVOoXl3poTPvNSJETex0ICudXQ2ZudLj9y9CgAID0jwxvhEBGVCiMX/ut0+emUFABAypkz3giHiKhUKCz3nvxotPF47dq16NOnD/Ly8jwdFpFXsJBAbjVt3WGny0eMGAEAWLJksTfCISIqFeYlHne6/JtvvgEAfPfdd16IhoiodCgs96Yu+MV4fMcdd2DatGlITk72dFhEXsFCAhERERERERG5jIUEIiKiUkJVfR0CERERlQAeLySIyAER2SIiiSKy3jwvVkQWi8hu8/8VPB0HecfaV290ab1Tyac8HAkRUenx01PXOF0uIl6KhIio9Cgs99b+YbrxmIVcKmm81SKho6q2UtUE8/NXACxV1YYAlpqfUwmw5ci5QtYwJdF33n3X88EQEZUSO5POu7QeT2SJiNynsNybuXuXlyIh8j5fdW3oDmCy+fFkAHf6KA5ys8e+Xe/rEIiISp2XZ21xupwNEoiI3K+w3Js0bFiBed27d2dRl0oEbxQSFMAiEdkgIk+Y51VW1eMAYP6/kr0NReQJEVkvIus5wikR0X9EpKaILBORHSKyTUSeNc932HVMRIaKyB4R2SkiN/suevIdnrwSEfnS2rVrkcHboFMJ4I1CQntVvRLALQCeEpHrXd1QVSeqaoKqJsTHx3suQiKiwJMDYIiqNgHQDqb82hQOuo6Zl/UC0AxAVwDjRSTYJ5GT13GMBCIiInInjxcSVPWY+f+TAOYAuArACRGpCgDm/096Og7yjvd7XO7rEIhKBVU9rqr/mB+fB7ADQHU47jrWHcAPqpqpqvsB7IEpH1MJ8OLNjV1aj81piYjcp7DcG//cYLvzWdylksCjhQQRKSMiZS2PAdwEYCuAeQD6mlfrC2CuJ+Mg7+nTtpbT5TyJJXI/EakD4AoAa+G461h1AIetNjtinpd/X+xSFoC6t6pWyBo8aSUicrfCcm+5brd5KRIi7/N0i4TKAP4QkU0A1gH4RVV/A/B/ALqIyG4AXczPqQSo88ovvg6BqFQRkWgAswA8p6qpzla1M69AZY9dygLTtSOWubQea7lERO5TWO7d07mzlyIh8r4QT+5cVfcBaGln/mkAN3rytYmISjoRCYWpiPC9qs42zz4hIlVV9Xi+rmNHANS02rwGgGPei5aIiIgAttClksFXt38kspGcnIy0tDRfh0EUMMTUwfIrADtU9SOrRY66js0D0EtEwkWkLoCGMLUUo1KE3XKJiHyPhQQqCVhIILe68TK7d/IsVKVKlXD55RyokagI2gN4EEAnEUk0T7fCQdcxVd0G4EcA2wH8BuApVc31Tejkbu3rV3RpPZ67EhG5T2G5N6pdOwDAudRzyMnJMeazkEAlAQsJ5FZfPdzG6XJnefPAgQPuDYaoBFPVP1RVVLWFqrYyTwtU9bSq3qiqDc3/p1ht856q1lfVxqr6qy/jJ/cacXcLp8vHjBnjnUCISikRqSkiy0Rkh4hsE5FnzfNjRWSxiOw2/1/B17GS+xSWe6sNHw4AaNmyFc6cOWPMZyGBSgIWEsitHv3mb1+HQERU6rw8c7NL6/HklchjcgAMUdUmANoBeEpEmgJ4BcBSVW0IYKn5OZUQznJvUlISVtx7n91lzMVUErCQQG619N+TTpezfy4Rkfut3nva1yEQlWqqelxV/zE/Pg9gB0y32O0OYLJ5tckA7vRJgOQRznJv//79UT3F/nIWEqgkYCGBfGbfvn2+DoGIqFThySuR54lIHQBXAFgLoLKqHgdMxQYAdgeTEpEnRGS9iKxPTk72WqzkOdnZ2Q6XMRdTScBCAnmVdd4cMmSI7wIhIiIicjMRiYbptrzPqWqqq9up6kRVTVDVhPj4eM8FSF7jrFiwe/du5OZyvGMKbCwkkFsd+L/bfB0CEVGp88fLHV1aj1fBiDxHREJhKiJ8r6qzzbNPiEhV8/KqAJz3AaWAUlju7bx3r935V111Fd58801PhETkNSwkkFtNXXuoWNsvWbLETZEQEZUecxOP+ToEolJNRATAVwB2qOpHVovmAehrftwXwFxvx0aecf78eXR5bKjD5aqK22LKOly+cuVKT4RF5DUsJJBbvTpni8vrpqen4/HHH8fp0/8NRLNjxw5PhEVEVKL9b+FOl9ZjiwQij2kP4EEAnUQk0TzdCuD/AHQRkd0AupifUwmwatUqZDS8yeFyVcXgeLtDYgAAhCOQU4AL8XUAVHotWrQIABAaGurjSIiIiIgunar+AcDRN8MbvRkLeUdwcDCASx/ngIUECnQebZEgIjVFZJmI7BCRbSLyrHn+WyJyNF/FlkoBe1fDONgMEREREQWSwgoBhbUACwpiw3AKbJ7+Cc4BMERVmwBoB+ApEWlqXjZaVVuZpwUejoO85MuHEoq8TV5engciISIqPUb0vNzXIRARlSpBQUE4/etYp+u8fjzJ4TK2SKBA59FCgqoeV9V/zI/PA9gBoLonX5N86/Ia5Yq8DQsJRETF07iK4wG9iIjI/YKCgpB96qDD5aqK3ZmZTrcnCmRe+wkWkToArgCw1jxrkIhsFpFJIlLBwTZPiMh6EVmfnJzsrVCpGNq+v7TI2yxfvtx4zOosEVHR3fnpny6tx8EWiYjcIzg4GFUe/MjhclXF9Dq1HS7nOS8FOq8UEkQkGqb76j6nqqkAPgNQH0ArAMcBfGhvO1WdqKoJqpoQHx/vjVDJw+ydxO7bt8/pciIico/ff//d1yEQEZUIxW1RwEICBTqPFxJEJBSmIsL3qjobAFT1hKrmqmoegC8AXOXpOIiIiEq7nTtdu00kERE5V1ghgYMtUknn6bs2CICvAOxQ1Y+s5le1Wq0HgK2ejIO8p/dVNYu1PauzRERFd0erqoWvREREbhMUFIQLO1Y4XWd+aqrDZTznpUDn6VJYewAPAuiU71aPI0Vki4hsBtARwGAPx0Fe8sFdLZwuZ9IkInK/l26+zNchEBGVKkFBQTi7YrLD5aqKMU7GeGOLBAp0IZ7cuar+AcDeN0fe7rGE6vbJKkztXfRbQBIR0aV7dPLf6ODrIIiISpGgoCDE3/2Gw+WqivE1agA4Z3c5L65RoGMpjNxq61HHTbiAwvuLZWdnuzMcIqJSYWdSmq9DICIqVYKCghAWV8fpOo3Cwx0uYyGBAh0LCeRXnn/+eV+HQERERETkVHEHW2QhgQIdCwnkVpXKOq68EhGRZ1SMDivS+tOmTcOOHTs8FA0RUcknIsi9cMbpOqdychwu4xgJFOj4E0xute61zgXmLVu2DJMmTXJ5H+fPn3dnSEREJd7cp9oXaf0+ffqgadOmHoqGiKjkU1UkTRlSYP5nn32G5cuXQ1XR6+BBh9uzRQIFOhYSyK1GL95VYF6nTp3w6KOPuryPmJgYd4ZERFTiffXHfl+HQERU6pRN6F5g3sCBA9GxY0eoKh6qEOtwWxHB4cOHcezYMU+GSOQxLCSQW41dutt4PGLEiALLC+svRkRERff16gO+DoGIqFRRVcTYKSRYJCUl4aHYCg6Xiwhq1aqF6tWreyI8Io9jIYE8ZsKECZe8bW5urhsjISIiIiJyn/wXx3Jzc3HbbbcZz3fv3p1/Exvs2kCBjoUE8qhLvQvDBx984OZIiIiIiIjcw7qQkKd5aN26NRYsWODy9jNnzvREWERew0ICudXPg661eT569OhL2s+wYcMAABcuXICIXPJ+iIhKg6/6Jri8bl5engcjISIqPU7OehsAMHPmLGzatKnA8gFHDru0n7lz57o1LiJvYCGB3ConJwcpKSl2l23evBm//faby/vas2cP7rvvPgCmEXBznNxCh4iIXHP4sGsntkRE5NjJkyeNxy+/9FKx9nXnnXcWMxoi72Mhgdyqx4S/0Lp1a7vLxowZU6R93XXXXfjll18AmPqZxcbG2lxJy8rKwr///nvJsRIRlRSPTl7vcNnatWttnn/xxReeDoeIqMS77bbbUKnnm07X+axGTS9FQ+R9LCSQ13z99ddFWn/Lli02z8+fP4+PP/4YS5cuBQAMGDAATZo0wZo1a7BrV8HbThIREbBs2TKb5/Pnzzces3UCEZF/WLJkia9DICoSnxUSRKSriOwUkT0i8oqv4qDAMnjwYHTu3BlHjx7FpEmTAADXXHMNGjdujHvvvRfbt29HcnIyFi5ciK5du2LUqFH466+/0K9fP2RmZuLChQsFTpwvXryI5ORkqCrOnz+PGTNmOHz9pKQkjBo1in2MicgvZWZmGgOAWbqDnTp1ymYd63687du3915wRETkUJcuXVxab+rUqejQoYNngyFyQYgvXlREggF8CqALgCMA/haReaq63dl2lpMjVYWqIi8vDyEhIcjNzUVQUBByc3ORnp6OyMhIAEBQUBBSUlIQHx8PEUFeXh4uXryI4OBgAEBoaCiys7MREhJirG/Zv4ggNTUVMTExyM3NRV5eHk6dOoWIiAhkZGQgPj4eYWFhUFVkZWUhLCwMubm5EBHk5uYiNDTUuK1LXl6ese/c3Fzj9e0dm6NbwWRkZCAoKAhhYWE2+xMRm20zMzMRFhZm7MdyLPlfy7KddYyW99OVuPLvw/Len/1jKgoenfvVqFGjwLwZM2YUKAIsXLjQeJyRkYEffvjBZnnNmjWNwoL1Y4sJEyZg3759WLRoEfbt24fU1FQAwOeff47o6Ghcdtll2LVrFx5++GEkJCQgJCQEFy5cwJIlS5CcnIx77rkH2dnZiI6OxtSpU7F06VIMGzYMFStWxE8//YTXXnsN5cuXx7Rp0zBp0iQ88sgj+OOPP3Do0CF8/vnn+OOPP5CSkoIyZcqgR48eyMjIwIkTJ3Dw4EFUrVoVTZs2xZEjRxATE4PU1FQ0adIEAHDo0CGcOnUKCxcuRPPmzVG5cmXk5OSgWrVqiI2NRVhYGP799180btwYsbGxOHr0KLZs2YKmTZsiLi4Ou3fvRpUqVRAZGYmkpCRMnToVHTt2xGWXXYa0tDRkZ2ejZs2aSEpKwsKFC3HvvfciNDQUUVFRyMzMxMmTJzFz5kzce++9qFmzJk6fPo1Tp04hLy8P2dnZqF69OsqUKYPg4GCkp6fj6NGjqFatGuLi4pCTk4Nz584hLCwMUVFRyMjIwPnz5xEcHIykpCRUqlQJcXFxyM7OhoggIiICFy9eRGZmJoKCglC2bFkApi9UwcHBCA0NNX6+MzMzcfHiRURHRxu/14cOHULTpk2RlZWFc+fOIT4+3vh5jo6ONn6/s7KyEBoaiszMzGL+9PqWiHQFMBZAMIAvVfX/fBwSucHD19QGFp7AZZddhvCyQcjIyMDZs2cxceJEfPjhh6hdzv7flsOHDyM1NRVr165FlSpVsHDhQrRq1QqdO3cGAKSnpyM0NBQhISG8VRkRkdnevXsBAKnr5wKN73O43rcpZ/BOEfZ7+PBhTJs2DSkpKRgwYAD27NmDG2+80Wad+++/H4D9c3wir7J8KffmBOBqAAutng8FMLSQbTQsLEwjIiIUQJGnyMhIh8siIiJURFREjHnWjx1NwcHBTpfFxMRomTJljHnR0dEqIlq2bFmNjIzUcuXKaZkyZTQiIsI4rpiYGI2KitJy5cpphQoVjHUv5fis91mmTBktW7asTTyhoaFavnx5DQ8PN+ZFRUVpXFycRkZGakhIiIaEhDh8zaCgIAVgsz0AjY2urOP6L9XY6MoFtqldTlTfjNHa5Qp/fzlx8tVk+dl2Mq33Re50Q+4NBrAXQD0AYQA2AWjqaP3WrVsr+b/s7GyneRcoeu7t3bu3TW6vUqWKdujQQdu1a6c7d+7Uffv26Zw5c3TWrFmqqpqamqoXLlzQ9PR0vXjxoq5Zs0ZVVc+dO6fZ2dl2487NzTUe5+XlaXZ2tubm5trMd7S+9bFT6RGoubeoE3Ov/1u+fLkCzs95LyX3jhs3znhsycGpqamanp6uOTk5+vjjjxvLL1686Ou3gUoBZ3nXJy0SAFQHYH3p9wiAtvlXEpEnADwBAFFRUejbty/CwsJw4sQJqCpOnjyJ+Ph4xMbGYtWqVcjJycHx48dx9dVXY+XKlcYVyF69eiE+Ph5JSUlITk7G+vXrERwcjJtuuglnz55FeHg4mjRpguDgYJw9exaRkZE4fvw4Tpw4gbCwMBw7dgzx8fFYsWIFcnNzAQA9evRAfHw8jh8/jiNHjqBJkyZISUlBeHg4UlJSUL9+fUREREBEsGLFCjRs2BDR0dGIi4tDeno6ypYti4sXLxotJSIjI5GVlQURQWhoqPE4JCQEISEhOHnyJA4fPow6deoAMI0UGx0djZycHFStWhW5ubnIzs7GzJkz0apVK9SpUwciAhFBVlYW4uPjjavBO3fuRIMGDXDu3DnjqrClsnrZZZchNzfXiOfs2bMICQlBdHQ0wsLCcOjQIQBAamoqGjVqhKCgIKgqjh8/jpkzZ6L6wMnI+LZ4I9dS8cTGxjq8c4Y98fHxSE5OtrvM0tLBVQ0aNMCePXts5nXo0AHLly8vdNty5cohISEBJ06cwNatWwEADRs2xO7duwus27JlS2zZsgV5eXmoX78+YmNjkZaWhipVqqBly5ZYuXKl0WIhLi4OR44cQePGjbFjxw7s2bMH5cqVQ9OmTbFlyxakpaXhyiuvRE5ODjZv3owePXogKCgIq1atwvXXX48dO3agRo0aiI6Oxj///IOoqChs27bN5ffEz1wFYI+q7gMAEfkBQHcAdluD7dixA23atDFyib3J0hLEIigoyCb3hISEGMuDgoKQnZ1d4HUsedDSyikkJASqitzc3P/+WJlbnwFASEiI0cpERBAcHGzsw9JCLS8vz1I88dgVG8tx2rujjPVrWj+2xFjYeq48trQS+PPPP9F0wHeAG3tcTZs2zeZ5UlISkpKSAACNGzd23wu5KC4urkAXDWsVKlQw/nalpqYiKioKp0+fBmDKY6qmrmsAEB4ejqZNm2Ljxo3G9mFhYQgPD0e5cuVQqVIlZGdnQ1Wxf/9+ZGdnIysrC4DpZ7hWrVoIDQ3FuXPnEBsbCwDGz2p0dDQSExMBmFo91qlTByEhIYiKikJqaipyc3ON2OLj4wGYzm9CQ0MRFBSEpKQkREVFITc3F6dPn0ZeXh6qVq1q/LxnZ2djx44dqFChgtEyT1WxdetWVKtWDfXr1zdum5yXl4ecnBzjsaqiTJkyxt/tixcvIicnBxkZGahYsSJycnIQHR0NEcHFixeRlpaGcuXKFfmzsuzf0urL8t5YWksGBZlazISGhhq/3/nziqVlp4XlfI7IX1i6uFZ58EOnufeH2rUBuH5ONmjQIOOx5Wc+JiYGcXFxGDt2rM1guRkZGZg+fTquu+461K1bF+np6fjkk08wZMiQAi2MiTzBVz9l9s7qtMAM1YkAJgJAQkKCjh8/3tNxBbyJEyf69PXrvPKLV17H8kXB2ogRI/Dggw+iU6dOxt0cLCeftWrVwieffIJq1aqhTZs2+Oijj/D888/jlltuAQA0bdoUL7zwAqpWrQoAeOedd/DYY49h0aJFqFWrFv7991/UqlUL3bp1AwA8/vjjGDlypNHMPzY21uaEa9++fdi5c6exf8B0speZmYmIiIgCx7Nr1y6EhISgbt26AEx/oOx1gQEcd4+x5/Tp04iKijK6+7gq/xcw6+40+TlatmPHDsTFxSE+Ph5ZWVkIDg52OW5/F8BNCQst4loXcCMiIhAfH+/0ylnZsmWNL/SA6WfH8qUlJibG+JJtmV+mTJkCQVl+hiw/d5bfbUuBwPJl3fLYen1LlzJz7Mb8oKAgm316guU4rb/wWI7V0eOgoCDjBM/Zeq48ti5gBJepAJwvztF4l7MCZn5lypRB5cqVHRYSLAWAiIgIREREoEaNGkhKSjKKqrVq1UJaWppRSIiKiirwBfnKK6/EsWPHULNmTSOfXbhwAZGRkahcuTL27dsHAKhUqRIaNWqE9PR01K5d2ygkZGZmIi0tDSKCqlWr4vjx47jssstQuXJlAKbie3R0NCIiIpCVlYV69epBRBAVFYW0tDQEBwcjOTnZOJZy5cohNzcX5cuXR9myZZGZmYnz588jPDwclStXxuWXX46yZcsiIyMDeXl5OHv2LKKiohAUFIT4+Hjk5OQgIiLCOO6yZcsiNTUV5cqVg6oaxZYLFy6gXLlyKFOmjNHd0/Klv1q1asbPbFHk5OQYv3+WvG8pLFryRnh4uHHhJP/vfm5uLkJCQozfeQBGUdi6+BNI2KWs5LFc5Cgs98a56Qv9qVOnjC4NFps2bULfvn0BAN988w0SExMxZswYxMfHo3fv3oiMjERaWhpCQkLsnnv+/fffiI2NxalTp9C2bVu754znzp27pIIilQ6+KiQcAWB9P5QaAI75KBYKMH/++Seuvvpq7NmzBw0bNjTmv/jiixARbN++HbNmzcL111+PihUrGldILSwnLIMHDy6w7wsXLuD8+fPGyZ8lQXfs2BGA6ZaT2dnZiIqKAgCUL1/eboz16tVDvXr1bOZZ+vPb06hRI5vnzr5wF+XLeMWKFV1e11r+L8rOTiQdLbOM1wCYrvaRXyi0iJu/gLtgwQJvxEXF1OJF935O99xzj92BZ9u3b4/JkycjLCwMkZGRqFixYoExdxITE1G7dm2cOXMGVapUMa54W+QvPlpv62yePZ5udUL+JRA/50sdF4z8W//+/X0dgs2Aiw8//LDx+NFHH8Wjjz6KF154AaNGjQIAY6ynNm3a4P7778exY8cwcuRIY5uuXbvit99+AwAsX74czzzzDHr27Ik333wTv/76K3JyctC+fXssW7YMtWrVQkxMDDIyMnDw4EHccMMN+Pfff1G9enUsXrwYPXv2RNmyZZGSkoKdO3fi1KlTuPHGG42W1pYxfMLDw7F06VL06tXLOLfNyMjAxIkTcc0116Bhw4bIzMxEdHQ0wsPDjSL89u3bER0djVq1ahnxW1pxfffdd8b5vbOLctYsBU7L36Vjx47h/PnzRus7V/4eZWZmYteuXbj88ssLfb2SxFeFhL8BNBSRugCOAugFoI+PYiE3ig/O8PhFsXbt2gEA6tevjw8++ADNmzc3ml8DphONu++++5L2HRUVZRQJ7AkNDS1w9ZEogLCIW0JlnToAhF9mPF+yZAn279+PcePG2dylwZ6jR4/il19+wWOPPYaNGzeiSZMmiIiIwJQpU7Bw4UIkJSXhkUcewalTp4xWW/lZn2S1atUKgKm7AYACOTV/8dHeCZqrXxgD8YsllTpF6lIGAHv27MHTTz+Ns2fPIjQ0FLt370b79u2RlJSE3bt3IzMzE+np6dixY4fReiMoKAgRERG48cYbERMTg6CgIJw4cQKLFi1C165dUb58eWzYsAFt25oaocXGxiI8PBxHjhzByZMnERQUhMjISOzbtw9bt27FPffcg+3bt2Pbtm1o2bIlRAQXLlyw6W7Yrl07XH/99QgLCzNaxZw8eRLHjh1DeHg4atSogSpVqhh3zYqIiEBwcDCOHTuGvLw8REVFISQkBOXLl0deXh7OnDljFCf37duHs2fPolmzZsjOzkZOTg4uXLiAmJgYiAgyMjKM6fTp0yhTpgyio6OxbNkytG3bFo0aNcLx48cxY8YMXLx4EZGRkbj77ruNi0HJyclo0aIFjhw5gtq1ayM4OBi7du1CYmIiKlSogAYNGiAnJ8foypSamoozZ85g1apVRndgoGDuzW9XZiYaFO/n55JZiggAjO5Zf//9N/7+++8C61qKCMB/BYrNmzcDgE3rWlf069evSOs/8MADRVq/MEOGDHHr/orr6quvxpo1awD8N9A/YDtgvoW9bnytW7dGSEgI0tPTsWXLFgCmv6/NmjVDfHw8UlJSsGLFCgBAz549MWvWLADAHXfcge3bt2PPnj0FXqtWrVq4/fbbcfDgQezatQsdO3bEoUOHkJ6ejrCwMOzduxfJycmFdpERTzb7dPrCIrcCGANTM69Jqvqes/UTEhJ0/fr13giNiuGdd97B2P+Nxzv3T8Ub3/dBStoJm+W1ywkOPFcWdcacx8Fzzn/2nnrqKUydOhVnzpwx5u3cubPA1XsibxORDaqa4Os4ikpEQgDsAnAjTEXcvwH0UVW7gz4w7waOGVN/wsmVMWhyZyguZJ/F7bffDgBo27Yt1q1b5zD3njt3DjExMb4Km6hIAjH3isjdALqq6mPm5w8CaKuqg/KtZ3QrA9Da03FZChDeYN0dNTg42GacmPzPA01sdGWH57xA0c57ifyUw7zrs5E4VHUBALaZLWHONboVzz0XBtjp+qqqqFPe9b6WI0aMwO+//44zZ85g3Lhx6NOnj3GFi4iKTlVzRGQQgIX4r4gbsCNH0n82aW1UxRkkJCQgJu6//q3Tpk3DK6+8gnWLZhbYZtiwYSwiEHlekccFu+KKK3T16tXGIJOWq+ZBQUHGFcOjR4+iXLlyRtPv9PR0BAcHo3r16rh48aIxQO3x48fRoEEDpKWlITMzE+Hh4cjOzjZ+99PT03HhwgWjtaVlYOErrrgCGRkZ2Lx5M1q2bIn09HSkp6cjJycHqampKF++vDGGiKri1KlTqF69Og4ePIgKFSpAVREZGYmQkBAEBwcjJyfHaDkRFhZmDApqaXqem5uLsLAwpKenGwN+ZmVloVy5csbAspYBPCMjI3HkyBFjIPGgoCCEh4fjwoULyMvLQ0xMDNLS0hAZGYkTJ07gzJkzqFu3LoKDgxEREYF9+/ahcuXKiIyMNI7dcrv4kydPonz58ggJCTHGDImOjkZGRoYRW/PmzXHihKloUP6Gvk4//Ofi4wFcvNSfHa/o168fJk2a5HSdsmXLGuPMAEC3bt0QFRWFo0ePYt26dcZV9qZNm+Lee+81WpBMnToVPXv2xM8//4zDhw/j448/xpkzZ/Drr7/ir7/+Qt++fXH48GHceOON2L59OzZu3Ih///3XGEx26NChiImJwebNm9G8eXP8/vvvmDlzJp599lkkJCQgMjISu3fvxvTp07Fq1SrUr18f77//PvLy8nD48GG0adMGmZmZOHbsGBITE5Gbm4urr74aMTExmDNnDuLi4nDddddh7ty5uPnmm3H55ZfjkUceQUZGBl544QWUKVMG3377LQYPHozDhw/j2LFjOH78OFJTU1GlShXUq1cPNWvWxMqVK3Hw4EE89NBDyM3NxZYtW7Bv3z6cOnUK77//vvG7ExISgsqVK+PChQvIzs5GREQETp8+jSpVqhhj6Bw5cgQ1atRAcHAwjhw5gjp16iA3Nxdnz55FcnIyLly4gGbNmgH4byyfEydOID09Ha1bt8bhw4cRGRlpFOgyMzORl5eHcuXKITs7G+np6ahSpQqioqKMQXejo6Nx9uxZRERE4OzZs7h48aLxu2oZ6N8en7VIKCpeGQsMdV75BZtf6IQpr68xqrMLFixAfHw8EhISUKd8kEuV2RtvvBFLlizBwYMHMXPmTL9rpkSlWyBeFbsUzLuBo8WLC9D/fAQeHH61TSEBMA3SldCgUoHcGyh//4ksAjH3isjVAN5S1ZvNz4cCgKp+4Ggb5l7/pqpYvXo1rrvuOlz+wi/ofz7CYYuE3Vc2QIPbT3qsRULLli2xadMmXH/99di5cydSUlKQnZ2NX375BZGRkcjIyECXLl2Qk5OD8ePHo1evXkhKSsIVV1yBzMxMrFmzBp06dUJubi5OnTpljBEGAJMmTUKHDh1QtWpVYwBGy0C/+bv5WgZHLSmDatN/nOVd3huEPObvv/9GTFwk4uLiirzt1VdfDQCoXbs2iwhERMUQHR1t83zWrFk2J4tE5FEcF6yEERFce+21vg4DN998M7p3746BAweidevWWLFiBTIyMpCcnGwzECFg6ptvOZ+uXr06ACAyMhKdOnUCYOpikv/vgr2xDix3W8mPt5ssnfipk8fExcUVuDJWmEqVKuG3335DixYtPBQVEVHpkv9uMVdddZXRbJSIPItdykquFi1aFOyj4maxsbGoVasWEhMTCywTETz00ENITEzE66+/DsBUHMhfRCDylKLdHJioEGtfvbFY24eEhOCKK65g0ygioiL46alrXF7X2e1cicj9VHWBqjZS1fqFDS5OgSMoKAhJU553us59Bw4WaZ8igq+//hpVq1bF2bNncfr0aaxZswZ//fUX3n33XezevRuLFi3Cgw8+iM8++wxlypTB559/jtjY2OIcCtElYYsEcqstR87hqkqXPngXCwhEREW3M8n1G+8yzxIRFV9wcDBC42o7XadheHiR9hkVFYWHH34YDz/8sDEvIiICbdu2NW7d2aBBA3Tp0qXI8RK5Gy9LkFs99m3xBgfiCS4RUdG9PGuLy+uyRQIRUfEFBQWh4i3POl1neNUqRdonWxZQIOHZBPmVsLAwX4dARFSisZBAROQfGjdubDx+/fXXsXjxYh9GQ1Q0PJsgrxoxYoTT5Rz1lYjIs1hIICIqPnfk0h07dhiP3333XZvCApG/49kEudX7PS53utzSv8sRdm0gIiq6F292fvIpInYfExHRpRERnF35jdN1RiefdLxs9GjmYwpoLCSQW/Vp6/yWM4UlzGnTprkzHCKiUqF7q2pOl/NklYjIvUQEF7avBAD8s3Gj3XV+SXU8EO4999wDANi4cSNmzJjh/gCJPIyFBHKrOq/84nR5YSezzZo1c2c4RESlwrUjljldzhYJRETuV/3JSQCACuXL212+pH59h9tacnGrVq1w9913uz02Ik/zWCFBRP4nIv+KyGYRmSMi5c3z64hIhogkmqcJnoqB/E8QT2CJiIiIKMDlHyPhpptuKtL2LOpSoPNki4TFAJqragsAuwAMtVq2V1VbmacnPRgD+RnhIF9ERF5nfcIaXsT7mhMRUUH5CwELFy40Hl911VVF3p4o0HjsW52qLlLVHPPTvwDU8NRrkf+48bJKTpdztHAiIvdrX7+iS+vNmzcPERERHo6GiKjkExFkHEy0u2zx4sX49ttvseZCutPtiQKZt77V9QPwq9XzuiKyUURWiMh1jjYSkSdEZL2IrE9OTvZ8lFRsXz3cxuny4GAWEoiI3G3E3S2cLrecsFauXNkb4RARlXgigpRfP7a7LCYmBs2aNcOwpONOtycKZMX6ViciS0Rkq52pu9U6rwHIAfC9edZxALVU9QoAzwOYKiIx9vavqhNVNUFVE+Lj44sTKnnJo9/87XS5CAsJRETu9vLMzU6X84SViMi9RASxtzzjdPm7Vap6MSIi7wopzsaq2tnZchHpC6AbgBtVVc3bZALIND/eICJ7ATQCsL44sZB/WPrvSdMn7gC7NhARud/qvafRHIV3WWA9gYjIPUQEkbVbAVZ3eDxy5AjOnz9vLL+6TBSANIfbEwWyYhUSnBGRrgBeBnCDqqZbzY8HkKKquSJSD0BDAPs8FQf5FxYSiIi8j+erRETuZa8QUL16dafLC9ueKJB4rJAAYByAcACLzb8of5nv0HA9gHdEJAdALoAnVTXFg3GQHwkK+i9pqiqTKBGRV4j5X+ZcIiJ3KG6hgOfAFOg8edeGBqpaM/9tHlV1lqo2U9WWqnqlqv7sqRjI+w78321OlwcFBXspEiKi0uOPlzs6Xc4TViIi9xIRHJ3Qz+k6nffudbo9USBjO3Nyq6lrDzldzq4NRETuNzfxmNPlxgkrT1yJiNxCRFCm6fVOl98WU9bpcqJAxm915FavztnidDkLCURE7ve/hTudLucJKxGRe4kIyl//sNPlg+MrOV1OFMj4rY68KohJk4jIZ3jiSkTkHhwjgUo7FhLIq8RJi4R169Z5MRIiotKDJ6xERO7FQgKVdiwkkFt9+VCC0+XBwY4HW2zTpo27wyEiKhVG9Lzc6XLLCStPXImI3ENEcPrXsU7Xef14ks3zH3/80WZ7okDGQgK51eU1yjldbn37RyIico/GVRwP6AXwhJWIyN1EBNmnDjpcHhQUhN2ZmcbzO+64A/fcc4/N9kSBjIUEcqu27y91upz3MCcicr87P/3TpfV44kpE5B4igioPfuRweUhICKbXqW08r1u3boHtiQIZCwnkF7ZscX63ByIiKj6euBIRuUdh+TQ0NNTmuaoWaXsif8dCAvmF5s2b+zoEIqISi+erRETuVVghICQkxOZ5/kICUaBjIYHcqvdVNX0dAhFRqXNHq6qFrMHBFomI3ElEcGHHCofLQ0JCMD811XjOFglU0rCQQG71wV0tfB0CEVGp89LNlzldzhNWIs8Rkf+JyL8isllE5ohIeatlQ0Vkj4jsFJGbfRgmuVlQUBDOrpjscHloaCjGJCcbz1lIoJKGhQRyq26frPJ1CEQl3qWctIpIaxHZYl72sfAMpkR5dPLfLq3HprVEHrEYQHNVbQFgF4ChACAiTQH0AtAMQFcA40XE8X2wKaCICOLvfsPh8pCQEIyvUcN4/vDDDxfYniiQeayQICJvichREUk0T7daLfN6dfa9995Ds2bN0KJFC7Rq1Qpr164FAOTk5CAuLg5Dhw61Wb9OnTo4deqU8Xz58uXo1q0bDhw4gBo1aiAvL89m/VatWmHdunXG87feegtRUVE4efKkMS86OtoTh+ZXth5NLXwlIiquSzlp/QzAEwAamqeu3gjUF7m3evXqaNWqlTGdPXvWcwfoJ3YmpTldbjlhZSGByP1UdZGq5pif/gXA8u2xO4AfVDVTVfcD2APgKk/H4+28e/PNN9vk3GrVqqFt27YePEL/ERZXx+GykJAQNAoPBwAc2L8fCQkJNstZSKBA5+kWCaNVtZV5WgD4pjq7Zs0azJ8/H//88w82b96MJUuWoGZNU1/+RYsWoXHjxvjxxx9dOsGqU6cOatasiVWr/rvy/u+//+L8+fO46irbvw1xcXH48MMP3XswJUTDhg19HQJRwCrqSauIVAUQo6pr1JTovgVwp6fj9FXuHTx4MBITE42pfPnybj2uQMRCApHX9APwq/lxdQCHrZYdMc8rQESeEJH1IrI+2ao5fFH5Iu8uXLjQyLerV69GTEwMhg8ffsnHECjq1avndHn+uzbkx0ICBTpfdG3wenX2+PHjiIuLQ7i5KhgXF4dq1aoBAKZNm4Znn30WtWrVwl9//eXS/nr37o0ffvjBeP7DDz+gd+/eBdbr168fpk+fjpSUFDccRWCoVDbcpfVmzZrl4UiISg1XTlqrmx/nn1+Au05mAd/l3tKoYnSY0+U8YSUqHhFZIiJb7UzdrdZ5DUAOgO8ts+zsyu43eFWdqKoJqpoQHx9/yXH6Ou8+++yzuPXWW9GlS5dLPoZA8f777yM61HFBJjg4GKdychwuZ16mQOfpQsIgcx/eSSJSwTzP69XZm266CYcPH0ajRo0wcOBArFhhGmE1IyMDS5cuRbdu3dC7d29MmzbNpf3de++9+Omnn5BjTg7Tp09Hr169CqwXHR2Nfv36YezYsZcce6BZ91pnl9aLKVvWw5EQBTY3n7R6/WQW8F3uHT16tNHEtmPHjsU6hkAx96n2TpezRQJR8ahqZ1VtbmeaCwAi0hdANwD363+/aEcAWN/OqgaAY56M01d5FwDmzJmD9evX44MPPnDPwfi58PBw/PZ8J4fLg4KC0OvgQYfLWUigQFesQkIhJ7qfAagPoBWA4wAsbfy9fkIbHR2NDRs2YOLEiYiPj8d9992Hb775BvPnz0fHjh0RFRWFnj17Ys6cOcjNzbUcm73jBQBUqVIFzZo1w9KlS5GYmIjQ0FA0b97c7ms/88wzmDx5MlJTS8fYAaMX7/J1CEQlgptPWo/gv+4P1vM9yle517prw7Jlyzx7kH7iqz/2O11ueVtZSCByPxHpCuBlAHeoarrVonkAeolIuIjUhWl8mnX29uEuvsq7R48exTPPPIOpU6carSFKg8Jy70MVYh0uYyGBAl1IcTZWVZcuP4vIFwDmm596vToLmJoXdejQAR06dMDll1+OyZMnIzQ0FKtXr0adOnUAAKdPn8ayZcvQuXNnVKxYEWfOnEFcXBwAICUlxXgM/NfUq3Llyk6beJUvXx59+vTB+PHjPXp8/mLs0t149Iqaha9IRJfM6qT1BjsnrVNF5CMA1WA+aVXVXBE5LyLtAKwF8BCAT7wRq69yb2nz9eoD6I+IwldkIYHIE8YBCAew2Pzl8C9VfVJVt4nIjwC2w9R67ClVzfV0MN7Ou6qKvn374pVXXkHTpk09fXh+pbDc+1BsBQAn7S5jIYECnSfv2lDV6mkPAFvNj71end25cyd2795tPE9MTER8fDz++OMPHDp0CAcOHMCBAwfw6aefGk29OnTogClTpgAAcnNz8d1339k0ke3ZsycWLFjgtImXxfPPP4/PP//caBZGRFRM4wCUhemkNVFEJgCAqm4DYDlp/Q22J60DAHwJ07g0e/HfuAoe4+vcS//hCSuR56hqA1WtaTXA+JNWy95T1fqq2lhVS2TeHTVqFCIiIvDUU095+OhKFuZlCnSeHCNhpPme5ZsBdAQwGCj0RNcj0tLS0LdvXzRt2hQtWrTA9u3b0bRpU3Tq1Mmm+VX37t0xb948ZGZmYtiwYdizZw9atmyJK664Ag0aNMADDzxgrFu+fHm0a9cOlStXRt26dQEAb7zxBubNm1fg9ePi4tCjRw9kZmZ68jCJqJS4lJNWVV1v7hpRX1UHWXWH8Bhf5V7rMRJatWqFAwcOePpQ/V5kZJSvQyAiL/BF3n399dexY8cOm7xbWsanuRQRES60HiMKABIo/SUTEhJ0/fr1vg6DCrHlyDnUjgjDlNfX4MHhVyMmLtJ2hTMHgbEtgGc3AxVq44cffkBcXBw6d3ZtkEYifyAiG1Q1ofA1AxvzbuD4e+tJrBu31X7eBXBw0yrUntPNyL1EgYi5l/xNYbn34toliPi1p03u3bZtGxYtWoTBgwd7O1yiInOWd4s1RgJRcbFpMhGR59WuVcvXIRAREYBmzZqhWbNmvg6DqNg8fftHKmVuH/eHr0MgIip1Hp3Mq5dERN5WWO49MnCAlyIh8j4WEoiIiIiIiIjIZSwkEBEREREREZHLAmawRRFJBnDQ13GYxQE45esgiiHQ4wd4DP4i0I/hUuOvrarx7g7G3zDvuh2PwT8E+jEEevwAc69TzL1ux2PwvUCPHyi9x+Aw7wZMIcGfiMj6QB41ONDjB3gM/iLQjyHQ4y9NSsJnxWPwD4F+DIEeP1AyjqG0KAmfFY/B9wI9foDHYA+7NhARERERERGRy1hIICIiIiIiIiKXsZBwaSb6OoBiCvT4AR6Dvwj0Ywj0+EuTkvBZ8Rj8Q6AfQ6DHD5SMYygtSsJnxWPwvUCPH+AxFMAxEoiIiIiIiIjIZWyRQEREREREREQuYyGBiIiIiIiIiFzGQkIhROSAiGwRkUQRWW+eFysii0Vkt/n/Cj6OsauI7BSRPSLyitX8p83zt4nISAfbFji+omzvDSIySUROishWq3l+9Rk4IyI1RWSZiOwwv5fPmucH0jFEiMg6EdlkPoa3zfMD5hgAQESCRWSjiMw3Pw+o+EsTf8+9JT3vmmNh7vUx5l7yNuZenvMWV6Dn3pKSdwHP514WElzTUVVbWd138xUAS1W1IYCl5uc+ISLBAD4FcAuApgB6i0hTEekIoDuAFqraDMAoJ7vJf3wo4vae9g2Arvnm+c1n4IIcAENUtQmAdgCeEpGmCKxjyATQSVVbAmgFoKuItENgHQMAPAtgh9XzQIu/tPHL3FtK8i7A3OsPmHvJF5h7fecbBHbeBQI/95aUvAt4OveqKicnE4ADAOLyzdsJoKr5cVUAO30Y39UAFlo9H2qefgTQ+VKOzzzfpe29eJx1AGz1x8/gEo5lLoAugXoMAKIA/AOgbSAdA4Aa5qTZCcD8QP85KumTP+fe0pJ3zTEx9/rJxNzLyUufF3Ov7z+DEpN3zTEHbO4N1LxrjtHjuZctEgqnABaJyAYRecI8r7KqHgcA8/+VfBYdUB3AYavnR8zzGgG4TkTWisgKEWkDACJSTUQWWK1v7/jgaHs/4k+fgctEpA6AKwCsRYAdg7l5VCKAkwAWq2qgHcMYAC8ByLOaF0jxlzb+nHtLa94F/OczKBLmXp8aA+beQMLc63+511/e/yIL1NxbAvIu4IXcG1KcjUuJ9qp6TEQqAVgsIv/6OqB8xM48hemzrQBTk6I2AH4UkXqqegzArVbrFjg+VV3pZHveL/QSiUg0gFkAnlPVVBF7H53/UtVcAK1EpDyAOSLS3MchuUxEugE4qaobRKSDj8Mh1/hz7mXeDSDMvb7D3BuQmHuZe90ikHNvIOddwHu5ly0SCmFOQlDVkwDmALgKwAkRqQoA5v9P+i5CHAFQ0+p5DQDHzPNnq8k6mKpRcfk3dnB8cHV7H/Knz6BQIhIKUzL9XlVnm2cH1DFYqOpZAMth6sMXKMfQHsAdInIAwA8AOonIdwic+EsdP8+9pTXvAv7zGbiEudfnmHsDDHOvX+Zef3n/XVZScm+A5l3AS7mXhQQnRKSMiJS1PAZwE4CtAOYB6GterS9MfX985W8ADUWkroiEAegFU3w/wdQnBiLSCEAYgFPWGzo5PriyvY/502fglJhKsF8B2KGqH1ktCqRjiDdXZSEikQA6A/gXAXIMqjpUVWuoah2Yfkd+V9UHECDxlzYBkHtLa94F/OczKBRzr+8x9wYW5l6/zb3+8v67JNBzb6DnXcCLudfewAmcjEEq6gHYZJ62AXjNPL8iTINX7Db/H+vjOG8FsAvAXqsYwwB8B1OS/Aem0UcBoBqABc6Oz9n2Pjq+aQCOA8iGqWr8qL99BoXEfy1MTe82A0g0T7cG2DG0ALDRfAxbAbxhnh8wx2B1LB3w36AzARd/aZgCIfeW9Lxrjoe51/fHwNzLyZufEXMvz3ndcQwBnXtLUt41x+2x3CvmnRIRERERERERFYpdG4iIiIiIiIjIZSwkEBEREREREZHLWEggIiIiIiIiIpeF+DoAV8XFxWmdOnV8HQYVIjcnD6ePXkDF6mVwKj0LlWMi8q2QBZzYBlRuBgSHGbNzTp5ESKVKXo6W6NJs2LDhlKrG+zoOT2PeDRyW3KvlQlG5fISdFZh7KfAx95K/cZp7mXepBHCWdwOmkFCnTh2sX7/e12FQIVJPZWDK62vw4PCr0Wfaesx/+jrbFc4cBMa2AJ79GahQ25i9/66eqDt7lpejJbo0InLQ1zF4A/Nu4LDk3uUNQzBjyPUFV2DupRKAuZf8jdPcy7xLJYCzvMuuDeQxBYoITjChEhEV31d92xRpfeZeIqLiK0ruZd6lkoKFBPKYobM3u7zu8WFveDASIqLSYeTCf4u0PnMvEVHxFSX3Mu9SScFCAnnMtHWHXV737IwZ6Nq1qwejISIq+eYlHnd53R07duDsjBmYP3++ByMiKh1EpKaILBORHSKyTUSeNc+PFZHFIrLb/H8FX8dK7jcv8That27t0rpnZ8zwcDRE3sFCAvmNhQsX+joEIqJS46+//gKA/2fvvsOiuLo4AP8uRVABCzYEBSsqFozYG9HYjS3WGGOMsSSaxESNPZrEmkSNUaOfJbbYWzT2il0UxQpiRQHp0qTDnu8P2HGX3YVdYFkWzvs887gzc2fmDAvH2bu3YP9+bmbLWD5IAzCZiOoDaAVgghCiAYDpAM4SUR0AZzPXWRF0+/ZtQ4fAWIHiigTGGCtihBD+Qoj7Qog7QgivzG38rRhjjOkJEQUT0e3M13EAfAHYA+gLYEtmsS0A+hkkQFYgunXrhrS0NKVtMiK8efPGQBExpj9ckcD0xnNmZ63Ldnz6VI+RMFYsvU9ErkTklrnO34oVA/9OaKN1WSLi3MuYHgghnAA0BeAJoDIRBQMZlQ0A1M77J4QYK4TwEkJ4hYeHF1isLH+EbPseAHDq1CkEByt3MVu5ciVsbW2l7bUvXCjw+BjTB65IYHpzPzBG67IulmrmPc8iJiYGUVFReQmJseKMvxUrBvxC4nQqr03uZYxpTwhhBWA/gElEFKvtcUS0jojciMitYkW1U7azQsy8wrvpHYlIad8//2wDAISEhAAAkh4+LLjAGNMjrkhgevPFVu3nQP7LwSHHMmXLlkX58uXzEhJjxQUBOCWEuCWEGJu5jb8VKwam7b+vU3ltci9jTDtCCHNkVCJsJ6IDmZtDhRB2mfvtAIQZKj6mP7Y9vtW4Lzw8AsC7CobAr74qkJgY0zeuSGCMsaKnLRG9B6AHMgb86qDtgfytWPEjhDB0CIwZPZHxh7QRgC8RLVPYdRjAyMzXIwEcKujYGGNMH7gigTHGihgiep35bxiAgwBagL8VY4wxfWoLYASATpkD3d4RQvQEsBhAFyHEEwBdMtcZY8zomRk6AFZ0LezfSOuyc0MyBqB58+YNd19gLA+EEKUBmBBRXObrrgB+xrtvxRaDvxUrsqZ2c9ap/NyQYFjpKRbGihMiugxAU/Me7UefZkYp+uJmrctW+ekn/QXCWAHiFglMbz5uWV3rsntjMgZm7NKli77CYay4qAzgshDiLoAbAI4S0Qnwt2LFQl/XqjqVl+dexhhjuRfvc1HrsuWGDNZjJIwVHK5IYHrjNP2o1mV9nOsBAG7fvq2vcBgrFojoORE1yVxciGhB5vZIIupMRHUy/+VJrYugdkvO61RennsZY4zlnv34v7Uu61uvPgDAx8cH27dv11dIjOmdXisShBDVhBDnhRC+QoiHQohvM7eXF0KcFkI8yfy3nD7jYIwxxhhjjDFDyTotpIuLCz755BMDRcNY3um7RUIagMlEVB9AK2SMHt4AwHQAZ4moDoCzmeuM6czT0xNPnjwxdBiMMWZ0sj7UMsYYY4xpS6+DLWbOVS6ftzxOCOELwB5AXwDumcW2APAAME2fsbCC17me2mnqVbi7u2Pw27e5ukarVq0A8AMxY4wBQNtatjqVP5/L3MsYY+ydxJd3tC5r5e6utzgYK0gFNkaCEMIJQFMAngAqZ1YyyCsb1H7iFEKMFUJ4CSG8wsPDCypUlk82ftZcq3IXLlzAhKDAPF3Lx8cnT8czxlhRsGRgY53K5zX3MsYYA94c/1PrstXWrtFjJIwVnAKpSBBCWAHYD2ASEcVqexwRrSMiNyJyq1ixov4CZHoxevNNrcuutnfI07VcXFzydDxjjBUF0/bd06l8XnMvY4wxoHyPb3IsI289GzD+S32Hw1iB0HtFghDCHBmVCNuJ6EDm5lAhhF3mfjsAYfqOgxW8s4+0f1vft+KZzBljLK+uPIvUuuwXX3zBuZcxxvJBSUfXHMvIKxLeenjoNxjGCoi+Z20QADYC8CWiZQq7DgMYmfl6JIBD+oyDGb/Lly8bOgTGGCuSMv6rZowxpk8rVqxASkqKocNgLN/odbBFAG0BjABwXwhxJ3PbTACLAewRQowG8ArAID3HwYzc5s2bDR0CY4wxxhhj2dI0APj27dvRsGFD9C3geBjTF722SCCiy0QkiKgxEblmLseIKJKIOhNRncx/3+gzDmYY/ot7aV22gd8j6XVCQgL279+vtD89PT3f4mKMsaLq8rT3dSqvmHsZY4zlTtDaz6XX2c0kFhMTg/qPfAsiJMb0rsBmbWDFzw7PV1qXHVSmjPT622+/xcCBA+Hp6Ym0tDS4u7vj9OnTeYolJSUF+/fv52kiGWNF2qE7r3Uqr5h7GWOM5U7pBh2k19k9axIRonbvKYiQGNM7rkhgejPz4H2ty/5UxU56/eLFCwBAbGwsQkJCcOHCBQQFBeUpll9++QUDBw7E8ePHpW0rV67E2LFj83RexhgrTH476adT+Z+q2HGLL8YYy6OyHT6TXuf0pVXI3Ll6joaxgsEVCazQEkLkWwuC169fK/0LAN988w3Wr1+fL+dnjDFjtWXLFkOHwBhjRYauz65BQUG4ffs2Hjx4kG8xhISEICkpKd/Ox5g6XJHACp2cEnDTpk3Vbv/55581HmNpaQkAnFQZY4wxxpjeZPcce/ToUQDA9evXpW0ODg5o1qwZGjVqBCFEvszsYGdnh969e+f5PIxlhysSmN5s+NRN67JfBQaqbNPUIuHOnTtqzzF37lzUqVMHmzZtUtlXsmRJAFyRwBgr2pZ81EirclFRUQDU517GGGO6iTy+QnqdXUXCgwcP4PfRR3jzRvM483FxcQCAihUrYsmSJUhKSkJMTIzOMZ09e1ZlW2pqKlJTU3U+F2PqcEUC05tGDtoP4vVQwwd8mUymdnv16tVx/77qGAxPnz7FzJkzVbZbWFgAyL4iISYmBo8fP9YmXMYKLSFENSHEeSGErxDioRDi28zt84QQQUKIO5lLT0PHyvKfcxVrrcpNnDgRwLvcK4TAwoUL9RYXY4wVZakRL6XXObWsfSJLz3FARgCIiIjA9OnT4e7ujrJly2odS3bndnR0hI2NjdbnYiw7XJHA9KblQtWaUE0u1K4tvY6IiAAA7Nq1S2MyDAgIwK+//qp2n2JN6+zZs7Fr1y6Ym5ur7MuqQ4cOcHZ21jpmxgqpNACTiag+gFYAJgghGmTuW644Fa/hQmT60m/1Va3Kyb/xUsy9f/75p15iYoyxoq7KiGXS65wqEnof/FerigQ5T09Prc4rl5aWpnFfcHAwt85l+YYrElihc+/ePQDAhg0bULNmTY3lNCXUyMhI+Pj4QCaTYcGCBRg2bBiEEBrPM2nSJMyfP1+6Lk8RyYwZEQUT0e3M13EAfAHYGzYqVtjIK1cVZZcnGWOMaSevz5EymUztOd6+favV8Ypfmjk7OyM+Pj5P8TCmCVckMKOlqdsDALRs2VJpqke5n3/+WWWqsxUrVmDOnDnSenJyssbz3r17N1f91BgzBCGEE4CmADwzN00UQtwTQvwthCin4ZixQggvIYRXeHh4QYXKCpipqWm+nzMoKAgfffSR1g+7jDFWFOW1IiEtLU3tM+65c+ekwRo1kclkSgM5Pn78GF5eXjpdf8OGDfk6gwQrurgigenNsBbVlNb9/f2xb/9+tWX3REfrfP7s5j5/+/at0mi1ikldU5cIuZCQEAwZMgShoaG4fPmy9FA8d+5cuLq6okuXLirHEJHUVJixwkAIYQVgP4BJRBQLYA2AWgBcAQQDWKruOCJaR0RuRORWsWLFggqX5ZM+rnZalTMzMwOgnHvz2iJh9uzZOHDgAPbs2ZOn8zDGmLGJ970gvSYiHDhwAI+fPFFb9nLJktlWNqSlpantntCvXz+VmRhkMpk0eG5ISAh+//13dO7cWalMdgM7KkpISIC/vz/GjBmDRo3UD9z777//YuTIkVqdjxV9XJHA9GbRgMZK6x06dMCUKVPUlp0XGqLz+bNrOZDVTz/9JL2eOXMmgoODNZbdtGkT9uzZg169eqF9+/bSsfLpJW/evKlyzN69e2FjY6NxRoms/P394e3trXH/5cuXMXnyZO5mwXJFCGGOjEqE7UR0AACIKJSI0olIBmA9gBaGjJHpxw/d6mlVTl6RoJh781qRIJ8dJzExMU/nYYwxYxN9YYv0mojw0UcfoWvXrmrLjr3jjX379mk8l6aKhKyGDx+ONm3aoHz58li/fj3s7OzUflmm7Rdd/fr1Q40aNbIt079/f2zduhULFy7E3bt3tTovK7q4IoHpTe+Vl5TWQ0NDNZbd6+ik8/kPHTqk8zFyr1690rhP/oB969YtAEB4eLjGD/QeHh4YNWoUrl27BgA4efIkEhMTIYTArFmzVFpNPHz4EOPGjcOgQYPw3nvvqcwV/PjxY1y4cAHt27fHsmXLdG4i7Ovri9evX+t0DCtaRManwY0AfIlomcJ2xa+q+wPgdotF0OgtqhWd6sjznGLuzWtFgqWlJYCcp9k1MzOTKmYZY6woqDjwR+l1dpUEQEbe3bp1q8b98fHxeKKhNQOQ8awJADt27JAGYty7dy+AjHHCssr6rKnJ6dOntSoHALNmzYKbm/bTvLOiiSsScmnJkiXYtWuXocMo1B4ExSqtZ+2Tm5qaKn1Qdsl8AC0orVq10rgvISFBab1q1aoqSfjo0aMIDQ3F+++/j82bN0sP4C9fvoS1dcb0awsXLsScOXPg5+eHmTNnQgiBhg0bYt26dVJ/tayVKx07doS7u7u0rvgfwokTJ1C1alW1lQuXLl3CypUr0aBBA3Tr1k3aHhoaigcPHqid1vL06dOYNGmSxp8DkFGLffDgQaVtISEh3FKicGsLYASATlmmevxVCHFfCHEPwPsAvjNolEwv/EK0q3yUD7aomHvleSw9PV2qSNWFti0S0tPTMXfuXJ3PzxhjhVWJCk7S63nz5mVbNqdn3ubNm6Np06Ya93fv3l3li6rsWjCkpKTg5cuXKl0cLly4IM2UlhvatJpgRZvRVyQkJiZi2bJliI2NVbv/7du3EEJg+/btuTr/iRMn0L9/f8yfPx8VKlSQtk+fPh3Dhg2Dn58f3rx5g7S0NKUPm3fv3oUQAn5+flpfKzIyMtcf0OLj4/OUDPIbIeM+zM3NMWnSJLx48ULp4dKpRg2UKFFC+tBdmCxevFhpfdGiRdI3bXK9e/dGlSpVYGKS8SckH4Dxn3/+UUruixYtQr169bBo0SK11woNDcXw4cNhamoKBwcHhISEqOyfPn06hg4dirFjxyI4OBgLFiyQrif/fenQoQO++eYbAMCDBw9w7949/PTTT6hSpQoaNWoEZ2dnLFmyBJ06dZKO+eijj7BixQoEBgbi2bNnSt09YmJi8Mcff2Dy5MkYMGAAbt++DQAIDAyEnZ0dfv75Z5w4cUKHnyorKER0mYgEETVWnOqRiEYQUaPM7X2ISHP/HlbkyVskKAoMDIQQAl988QXc3Nx0HqCrRIkSAHTrdsYYY0yZNi0IspbJbtywlJQUODk5oUmTJkrb3N3dVcZcYEwXBqtIEEJ0F0L4CSGeCiGma3NMQkIC/ve//+H8+fP4/PPPkZSUhKNHj2Ly5MkoU6YM3N3dsXHjRpw/fx5eXl4ICgqSmvoo9s0fP3680rch//zzDy5cuICXL1/ixIkTOH/+PKKjozF16lT06NED//77L+bMmYPIyEisWbMG//zzj3RsvXr14OTkhA8++AA2NjaYOXMmatWqBVdXVwCQvs2NjIxEmzZtcP/+fQBAdHQ0pk2bhvj4eHTq1Anjx49HhQoV8Ntvv2HMmDHYtm0bdu7ciejMgbBiY2MRFxeHKVOmwNvbGxs3bsRPP/0EmUyGhIQEvP/++2jcuDGeP3+OoKAgeHl5oWHDhti0aROsra2hafT1U6dO4dy5c9I6EYGIEBQUJG2LjIxUqqhJSEjA9OnTERUVhfT0dKSlpWHWrFl4+PChVGbo0KFIi4tEWloaVqxYke00jgAQlpaa7f7CSj6q7t9//w1A+35ocn/++Sd27NgBmUym9DOX27JlC5YsWYLdu3cjICAAQEZFR5cuXTBz5kyYmpqqHcG3SZMmKjXi06dPx/nz5/HgwQP8+++/UqwhISGoXbs2HB0dsXbtWsybNw/Tp0/Hd999h/Xr1wMAHj16hN9++02aZ37evHno0aMHtmzZotKqIikpCSNGjMDZs2dx48YNREZGwsvLC3v37lWpKJNXYDx58kRtqwl5E+nQ0FAcOXJEZT8R4fr16yAiHD9+XKnC5tGjRyAipcqZW7duITw8HCNHjsSKFSvg5uaGxMRExMfHo2/fvvDw8MCaNWtU/kNOTk6Wat7/+OMPlTgYKyxsrUpoVU5eCaou927evBlARlepHTt2KO07duyYxoG25C0asusiwa2ZGGNFUXp8lNZl8+OZV5eKBHlLhMDAQGmb/NnI09NTbcUyADRr1kzqpvHixQtpUEdNtm3bpnaMhoiICIwfP57HzymK5B8cC3IBYArgGYCaAEoAuAugQXbHmJmZEQCVxdHRUe12dYsQglq0aKG0rXXr1mrLOjs7a33e7JYvv/ySypcvT3Xq1JG2DRs2TGl/dseXK1eOypUrp/N1TU1Nldb79etHAGju3Llka2tLFhYWZG9vL+1v06YNtW/fnho2bEg2NjYEgFq0aEFWVlYq51b8GVatWpVmz55NAMjMzIx6fNCHVo07S+WtKqt/v8oIork25FhG5MvPt6gvzZs31/s1Fi5cmGOZ9u3bZ7u/Ro0a1LdvX3JxcdH6XOr+pq2trcna2poOHDhAvXr1Unv8ypUryd3dnZydnal+/foEgJYsWZLjdc3NzTXus7W1VVpv3bq19Hc3efJkAkDdunWjKVOmyMt4GSJ3FvTSrFkzYsYhJjyBVo07SzHhCeoLvPEnmmuT8S8RTZw4Mce/mRIlShAAun//vnQa+T515s2bRwBozpw50raVK1fS8+fPpfW0tLRsz8FYdjj3ssJGnnvVPffq85k3NDRUaT3r5xvFpUOHDirb1qxZo7RORBqP//PPPwkANWjQQGUfEVF8fDzVrl1b2latWjWaN2+e9DMaM2YMAaDFixfT1atXDfI+sdzLLu8aJEECaA3gpML6DAAzcjgm3/8Iecn/pbxVZSmhlmn7scp+TUl1gm0Fg8fOCy86LPwwywoV+cPssoMP1RfIUpEwYcIEArTLvdevX5dOI98mk8no0KFDlJqaKu2TVyT8+OOPRET09u1bAjIq/OWSk5OlczCmK869+peYmEj79+8nmUxmsBiMiTz3OrqPVcmd+nzmnTp1qtZlFT/ka1rOnj2bqziIiG7duqV236pVq+jFixc0cuRIlWOyunLlCgUFBVGfPn3o33//1fv7dvHiRXr79q3er1MUZJd3DdW1wR5AgMJ6YOY2JUKIsUIILyGEl7zZTV7mNXd2ds71sXlRtWpVpXXFwfTUsbKyAgBUqFABpqamsLW1VSlTunRpjcd3795d7XYnJycAUHu+smXLAgDee+89aZu6AQnlfWDl+vTpo7SuOO9s2XYfa4wxqwkK408w4yL/fXJ0dNTpuCZNmqhtTteuXTul32ELCwul/Y0aNcKHH34orct/r+vXr6/T9bVRpUoVpfUOHTrkahA6xgrKpiv+WpXLeDbQLvfKu3ApOnr0KPr27YsFCxZoPE7eHUhx/JXsmt+GhoZCCIHjx4/nGBNjTDfZ/e3JxcfHY/bs2fjoo49w/vz5Aoiq6LBx66t12fx45v3tt9+0LpvdrGlynTt3znHmHnXPbOvXr0ezZs3Ulp84cSK6d++u8n+Iupl92rZtixo1auDw4cPo168fJkyYgP3796uUk8lk2LJli1LXjmPHjuHZs2f48MMPcejQIZw7d07t/1tyISEh6NChA4YNG4ZNmzZJ/x/mVUpKCmrWrImDBw+qDIyuqYu50dNUw6DPBcAgABsU1kcAWJndMQ0bNqSVK1fS27dvacGCBRQQEECRkZG0YMECqYbLw8ODvL29qU2bNnTw4EE6e/YslS9fnqpUqULdu3enpKQkiomJoVu3btE///wjfZOSkpJCmzdvJm9vbxoxYgS9fv2a/ve//0ndAUqWLEkNGjSgatWq0eTJk5Wa+1euXJkGDx5MCxYsoNGjR9OAAQOkpj9fffUVnT9/nhITE+n169fk6+tLjx49ooSEBOrZsyd5eHhQREQEHT58mIB3Tb4vXbpE3bt3p0ePHhERUWBgIJUqVYpOnTpFR44coZSUFEpMTKRTp07RhAkT6ODBg9SrVy8aNWoUjR8/nqKjo+mXX34hT09PatKkCd2+fZs8PDwoLS2N0tPTc6x5OnnyJPn5+RERka+vL33++efk6+tLixYtovT0dLp+/Tpt3ryZ2rVrRxEREZSQkEAeHh40YMAAigyOlVokOE47onXtrI9zvYL8Ntmolo8/Vm3Z4e/vr7T+2WefKa0PGjRI7bnGjBlD+/fvp7Vr1xKQ0eXl2bNn9ObNG+k8Dg4OtHv3blq2bBkBoMGDB9PcuXPp5s2bSufq06cPAaCEhASKiYkhooxmyxcuXKCZM2eSTCajTz/9lE6ePEmPHj2ilJQU6fdZ8ZuOt2/f0ty5c+ncuXMUGRkpbU9LS6Pk5GQiIjp79iw9fvxY6dtPIqLg4GDpdzoxMZF69epFFy5coMjISHr69CndvXuX7t+/T8nJyZSQkEBv376lCxcu0NGjR2nr1q309OlT8vHxoQ0bNtBvv/1GV69epfDwcKVrpKWlUXBwsFLM4G/FWCEj/1as0ZSj6gtkaZHw1VdfaZ17r1y5Ip1Gvk2eQz777DNpX9YWCeHh4VJ5ubi4OJVtcsePHycgoxsRY+oUl9zboEEDevDgATVs2FCpRZCugoKCqEOHDjRgwAAqU6YMDRkyhLy9vZXKBAYGUmBgIP32229Sdyb54u7uTr6+vtL/xXKhoaF0/Phx2rJlC7169Yr8/f1Vrp2UlKR0nEwmU+rmlJ0zZ87QjRs3dL9hNeT//0dERORYNjExkaKionQ6v2LuLerPvBUq5F/r4d9//5369OlD33zzDb148UJjuXv37hERUWRkJJ0+fZp69Ogh/W726NGDfHx81B43YcIE+u+//6T3afXq1XTnzh16/vw5Xb9+XamsYrn79++r/X2WU/wsJZPJaNWqVRQQEEBEGX9viuf966+/KC4uji5evEgA6ODBgzr9bmkj63OxJq9evdK6bFbZ5V2DJEjkomtDdg+0586do4EDB1JaWprKvpSUlFw3z/r1119VHqKIMj5cnz59mv73v/9RYGCgynGvX7+m1q1bZ/uLmNXz589JJpNRXFxcrmItLOQJ1efOE6WKhL59+xp1UpUnLnVL2bJlc3XOX3/9lfbv36/Y715pad68OX388cdERNSpUyelcTYSEhJo8uTJNGbMGCkxKB47adIk2rt3L+3du5f27NlDN27coJ07d0rv07Vr11SSWtYks2nTJgIyxvSQe/DgAd27d4/Onj1LMplM5eGiuMguqRalhSsSjIeuFQny8Xm0yb2XL1+mDz/8kCpXftcHeNWqVQSARo0aRUREV69elfbJKxJev34tbZOLjo5W2SZ3+vRpAkCdO3fO558OKyqMNfcC6A7AD8BTANO1KC/9nQghaPXq1RQcHEyenp509OhRio2NpQcPHlC/fv1o3759UkU9UcaHm8TERI1/z87OznTz5k3q27cvWVtba/W8Ur58eQIyvuhKSUlR+0zUoEEDOnLkiBRHmTJlqGnTphQdHU2HDh2i8ePHEwC6ceMGPX78mP777z/6999/CQBt27aN/v33X7px4wYNHDhQOuemTZto+fLlJJPJKCUlheLj4+nBgwcqvxf37t2jwMBAOnpUOf/JZDJ6//33pfN16tSJWrRoQZcvX6bg4GC6fv06RUREUFRUFO3YsYPatGmjlJtkMpnGzxDp6em0ceNGqmBjV2wqEgy1rFy5UuO+du3aZXvsnTt3qEaNGtmW6datG/n4+NDGjRulbRMmTKCffvqJWrduTdu2baPjx4/T999/T0DGl8ipqalKY0bs27dPpYIi6zJ+/Hjy8/OjqKgoioiIIJlMRg0bNqS1a9dSVFSUxs+BiYmJNGnSJGrfvj0FBgaSr68vubm5Sdc/duwY7dy5k/bs2UMeHh709ddf0+vXr+nWrVsUHh5ODx48IAD09ddfExHRvn37VCrMnjx5QtevX6ddu3bR8+fPpW4fsbGxhEJYkWAG4DmAGng32KJLdscY4oFWJpPRnTt3uJ+YDhQH/Fq/7wQBoFmzZlFKSgoFBgZKSfXPn5U/PDewsDB4opIvFhYW1LhxY6VtH374ofRa/oF+//79dPDgQaVv3RT/A1Qsu2zZMvr666+V9sk/2Mu/2Zs9ezbNmDGDXF1dCQAdOHBA+rnKZDKKj4+no0eP0vLly9X+7J2cnKhly5Y0btw4ev36dY7vVXR0dLa/2/Ia1CVLluj2S1AMZJdUi9LCFQnGQ557b9wPVV9AQ0WCNrlXngsUlz/++IMA0Oeff650PiBjUF+ijMpJ+Ta5yMhIlW1EGa2LqlWrRgCoY8eO+f7zYUWDMeZe5GKA8Zz+JkuWLGnwZ6WCXJo1a6Y08PicOXPIwcGBqlevrjJwc/369cnS0pKmTZtGdnZ2eb72oEGDaMyYMdSyZUvq1asXNW7cmLp27Srtl48NVrmG6mCHmioSCtMzLy+GW8qUKaNxn6ZJBvK6yAfU13HRmHfVz/ehZ0SUJoSYCOAkMhLs30T0MIfDCpwQQmnOVaabli1b4caNG2jWrBlMTExgb/9uGIyJEycg3doe3333ncpxc+fOxU8//VSQoSoxMzNT6Qem2G9s7dq1qFOnDqpVqyZtmz59OsqWLYtp06YByJg27c2bN2jevDnS09NRsmRJpKSkYOXKldIx8rEwPv/8czg5OaFTp04wNzeX+gdXUOhDJ4RAqVKl0LNnT/Ts2VNt3C9evNDpPsuUKZPt/vbt2+PatWto0aKFTudljBV+mR9WtHLx4kWVbfLxD65fv67xuNRU1SnOkpOTpde7d++Gs7MzXF1dMWXKFGmKW3XHMWbEWgB4SkTPAUAIsQtAXwA+uT1hcZtGL+vYRL/88ovGsr6+vgCAJUuW5Mu15dPIK7p3716+nJsVbzExMRr3yf+PzW+xsbH5ej5DDbYIIjpGRHWJqBYRaR6tiRmtD1ddRvPmzaX5yoGMOWYBQEDg22+/lT5M73OqIZXJOrhebowaNSrb/StWrNC4z9zcXGUgmCFDhkivTUxMlCoRAGDRokVSJQKQMfBf27ZtUaJECZQsWRJAxkCVL168gL+/P77//nt06NBBul63bt1gbm4OAFLllaEGB1XUqlUrpfePMVa4jd7ipVN5xdyryezZs1W2yT/s+/j4YMWKFVizZo20T17xqq5CQHHw4aFDh6Jp06YIDg5WKquvByjGDETnAcYLLDIjVa5cOZXBkLOSDyKeXypVqgQAaN26NRo3bqy6/6O5Wp9Lm7zLmDHgTwisQLVv1056LYSAv78/pk+frlRG3aiwusqpMuKbb75Rah2gyNzcHMOGDVPa9vHHH6NNmzZ5jsvJyQmOjo5YunQpbGxs1JZZvXo1vL29pf+0GGMsv+nSIkEdxQ/7kyZNUtq3a9cuCCEQFBQkbbt58yYcHBzUnissLEzpGz7F0eUfPnyIIUOG4Pbt21rFderUKSxevFirsowVEHVD4av8ARLROiJyIyI3xRmwAOD48eMYN24cBg0ahBcvXsDLywsWFhb47rvvcOPGDSQmJiImJgYxMTH47bffMGPGDDRo0EBjQL///rvON9GzZ0907doVQUFBmDtX+UNzu3bt4Obmht27d2Py5MmYPXu20pcQU6ZMwc2bN/HJJ59g7969SE1NxdatW6X9T58+RWhoKFq3bi1tW7BgAQ4dOoRBgwZh586dePjwIQ4cOICXL1/izZs3ePbsGZYtW4ZFixZh7ty5CAgIQFRUFOLi4kBEiIqKwvXr1zFmzBiYm5ujevXqAICuXbti8uTJ2L17N/bt24cBAwbgq6++QvPmzQEAT548gbe3N6KjoxEWFobIyEhEREQgNDQURISrV6/i7t27eP78udpZBYobxfdMH8qWLYudO3fi9evXKFWqlE7Hzpw5U+WLv+zIZyyZOXOmVCH++eefS/v79euHGjVq4MaNGyAi9OjRQ9r377//4u7duzh8+DC++uorabu85XXDhg1RunRpPHr0CH5+fiAiBAQEwNvbGxcuXEBqaipkMhnOnz8PmUwmdR1ISUnBq1ev8OLFC7Ro0QIXL17Er7/+igkTJmhsWbxr1y4cPnwYM2fOlGY2c3BwwOjRo3HmzBkcPnwYe/fuRWJiIuLi4pCYmIj09HQEBgZi+fLl+Pvvv0FESE1NlVoKamTovmPaLtxX1zgojpHgOO2IaoEs/XSJiP73v/8pDTzz559/atVn59NPP9W4T9MAhvKFiGj//v1q95UuXZrS09PlA4xI5Tt27EgA6Ny5cwXys2SFF4ywn25uFs67xkPXwRbHjRtHQO4H/Zo7d26OZdasWaPVuRTHVwBADg4OVK9ePVqyZIm0rXbt2tKtpKenk6OjI23ZskXlNuXlsxv/5erVqxQbG5u3HzgzCGPMvcjlAONTpkyhH3/8UeO4SDmJi4ujgQMHqh0Y8cyZMzR06FCqXr06AaALFy7Q9OnTqVGjRiplf/jhB3r06JHK4Mry/W/fvlX5e5PJZJSUlESPHz+moKAgjTGGhYXRixcvlLa9fPmSLl26lKt71iQpKYnS09MpJCREY5nk5GSKjo7W+dzBLyOK9WCLiuNFZF2cnZ3piy++yPb49957jwBQ69atlbZbW1vT/PnzpVnB5NasWSONR9a4cWOqUaMGvX79mq5evUp+fn60bds2evnypdIxK1eupGXLllF4eDg9evRI6TrTp0+nc+fOqcwoEh0dTdOmTaPk5GTy9/ens2fPqrz3YWFh9MMPP6idDaFevYz3OD09Xa8Dk//888/UvHlzSkpKIplMJs34pygmJoYSEhJyfY3s8q7BE6y2Cz/QGgfFioRlp/xUC6ipSFi3bh1NsH03pcz69esJgNI0m+qW7CoSFi5cmO2xRBmjlgKg/v37K+3r1KmTFJtiea5IYHLG+DCbm4XzrvGQ595lBx8qbZfJZBmjL2fJvWPHjiUASrk3vxd5Ls9pcXNz06qc/MOK4gC38pmTZDKZUsWFYkXB0aNHpSmNU1JSCAC5uLgUxNvC8pkx5l4YeIDxpKQk8vb2pi+//JKWLl1Kt2/f1lhWJpPRli1baPz48WRnZ0fp6ekaK+U8PDxo1apV+RansXoT+pZWjTtLju5jVXKWpooEfeZdTUvv3r1zLDNnzpwcy5QqVUpp/aOPPtJYdteuXUSUMSOPfOYPdc/jRBm/ewBo6tSptGrVKkpMTNT4Mw8MDKQmTZrQ06dPc/WeKQ6gfubMmVydIychISFqKx+MUXZ51yCDLbLi4bsudbUqJ4TA6sgIaV3edCmnAbdMTU017itfvrza7TY2Njh79iyAd4OcWFpaSvu9vLxQp04dtcdOmjQJFy5cQMOGDbONizHGDGV0O+W+tz179sSJEydw8/R+uAFIl8nw5/LlWLduHQAo5d78lpCQoFW5kJAQrcrVq1cPjx8/Vtrm4OAAIsLKlSvx7bffKp3T0tIS5ubm6NWrFwCAiBAfHw8go8tEQbh48SJSUlLwwQcfFMj1WOFDBh5g3MLCAq6urvjrr79yLCuEwKeffopPP/1UadwTdTp27IiOHTvmV5hGyzSzC0ec1yGtj9Fn3tXE0dEx2/1///03Ro0ale1AlvXr18f9+/eVuiBnNxaFfBy0Dz74ADY2Nnjz5g0AoGLFijh79qy0H8j43cv4zJoze3t73LlzR6uy6hw+fBhEhKdPn2p85s+rypUro3Llyno5d2HCYyQwvWmx4IzWZT1q1ZJeywcnTElJwdOnT/G///1P+bwtWuDJkyewtrbWeD5NFQkxMTFwc3MDAHTu3Bnly5fHjBkzpP2urq4axy7o168fiAgVK1bU7qYYY0quX7+uNJApEUEmkxkwoqKn7+or2LNnD968eYMlS5bgxIkTAICBAwcCAGrVqoXvv/9eKq+Ye/Ob4gf77AQGBmpVLmslQnbXat26NWxtbZGSkiJtmz59ulSRAADjxo0DoP0sEenp6UhNTYW3tzcePnyI+vXrq3w4++OPP7Bjxw5pvWPHjujSpQtGjRqlNC5PXFxcgVVmMMMjHmC8yKsyYqnWZfWZdzVRnH0MAPr37y/NyGNra6t2kHLFsTo+/PBD+Pj4qHyJN3z4cHh7e2PAgAEqxys+p5cuXRpAxnPAq1ev0KhRI9SoYbhBJ4UQeqtEKE64IoHpTVhccs6FkPHHXMnMXFqXt0ggItSqVUtlkMOaNWuidu3aaisS5MdaWlri7du32Q5Y6OjoiMjISKVEmTVB3r9/H1evXtXqPhgzBkKI7kIIPyHEUyHE9JyPUCWTyZCYmCh9ANT0QezVq1cICwvDo0ePcPv2bbRu3RpDhw5FTEwMzp07B2dnZ3z55ZdS+fj4eDx69Aje3t4az/fy5UvExcUhOjoan3zyCa5cuaIxTiLC27dv8fbtWxw7dkzl244XL15g7dq1iI+Px8uXL6Xtd+/eRXx8PFJTU/Hq1SuN51+zZg3Onz+P58+fazUd248//oi//voLR48eRWRkZI7ls9JmNoPItykYMmQIbG1tVQayVUcx9xoreYsDRZGRkYiLi0NYWJi0bcmSJbh8+bK0vm7dOly5cgUlSpRA06ZN0b9/f0RERCA1NRV37tzB48ePsXjxYgQEBODHH39Ev379UKJECbz33nto2LAhHj16hAkTJuCTTz7B1atXkZaWhu+++w7Dhw/H7du38fHHH0vX2rx5M7755htMnjwZU6ZMwfDhw9GwYUM8f/4cKSkpiI2NxYMHD7B06VKEh4cDyKhsePToEY4fPw5HR0dER0fD19cXRISgoCAcOHAA8fHxiIiIQHR0NMaPH4+oqCjp9zwoKAivX7+WYoiNjUVSUhICAgJw+fJlfP/990hOTsbt27elChdtvxGUy1o+JiYGUVFR0rp84My0tLRspwqVv2c3btzQ6fqMFRampctpXdYQeTdrRYKTkxNcXV0BQO0XaDExMbh79y4uXboEmUyGw4cPq5RJT0/H+++/D1dXV5VBzhs0aIBmzZpJ6zt37sTQoUPRqFEjpZbAzLhx1wZmcFmTW9ZklHW//EOLfIRdud69e0Mmk+HYsWMwMTFB6dKl4eHhgV27duHnn3/ONoYpU6aoHcWYuzGwokQIYQpgNYAuyJiC7KYQ4jARqZ3P/MWLF/jiiy9Qs2ZNeHl5ITY2Fq1atcKCBQvg4uKChw8fYsyYMdi7dy+EEIiKikLdunXx+PFjlCpVSm3T9kOHDik1hXzy5Amio6Nx6dIlBAcHS9utrKyQkJCAZcuWgYhgbW2NL774Qn4f0geY7du3Y9CgQejfvz+eP3+OyMhItGvXDnfv3sWqVaukppQA8MMPP2D79u1o0aIFfH19ER8fj4CAAKkyY9CgQbhx4wZevnwJS0tL9OzZEwcOHMAXX3yB0qVL49ChQ3ByckKzZs3wwQcfKI3MPGTIELi4uCAlJQXOzs4ICQmBl5cXvvnmGxw9ehRVq1ZVajJatmxZTJkyBXXq1EHJkiWxdOlStG7dGjKZDCVKlEBoaCiuX78OIQRcXV1hZmaG/fv3S+v9+/fHvXv3MH78eDx79gwBz0JQEsojvRcXx44d07gv64jdQ4cOVVpvlzmT0J07d3Dnzh38+++/KudQbLWmzvbt27F9+3albYoP0IqWLVumtF6rVi1YWVnh7du30rYpU6YolZHv/+abb7Bt2zbUr18fvr6+ADL+v0xOfldpf/v2bdy8eRO1atXCs2fPso0byJgxY/v27ShfvjzevHkDKysrvPfee4iOjsa8efMwZ84cdOjQASdOnEBKSgrS09Mxffp0pKSkICIiAr/++iu+//57LFu2DBMnTsTatWulCq/ff/8dM2fOxMiRI3Hv3j14enqiatWqaNmyJUaPHo1bt27hjz/+gLm5OapVqwZ/f39ERkbi0KFD2L17N+rXr4/AwECYm5sjJCREmjKZMabemjVrlCrnFWV9ljY1NYW1tTVWrFiBnj17qpS3tLSEEELKkeoozsyRdZaQrC2uGjVqhJ07d+Z4D8zIaBo8obAtPOiXcVAcbLHXnxdVC6gZbPHvv/+mvY5O0sAnFy5coJ49e9K+ffuIiOjp06dKA7P06dNHOrZv377S9oULF0qjEx87dkzpssgyqAtjeQEjHPArI2zdRg+HmoGReCmcS3mryrRq3Fly/my12v2aBv1SzL288GIEi1HmXl0XfuY1HvLnXnW5N7d5Ny4uTqu/By8vL6X17GbKmTRpEp05c4ZatWpFAGjatGlq70dePruZb+RlFKWlpdHZs2epRYsWtG7dunz9GTPDyi7vctcGpjdHvm6vddlBL/2l10IIHD16FB999BGAjG9sfvjhB2m/Yp9XFxcX6bWJiYnU31qxlhTIaOKp2HSZsWLKHoDipMCBmdskQoixQggvIYSXiYkJ2rdvL30jUaJECY0nNjU1hb290qk0DsIk/9vWRqtWrTB48GA0adJE4xzSrVu3xpAhQ2Bvb4/evXujYcOGmDRpktqy8vFTsrsXADA3V256Wrfuu8Fjx44dCwcHB6XWU9WqVcPQoUPh4OCAqlWrYtCgQRg8eDC6deuGAQMGoFu3blIfUbnmzZtjzpw5aNOmjZSzpk2bJrW2ko8XA7wbtKp8+fLo0qULAOCrr77CwIEDMX/+fOlnHb4v+9ZXWSnmXlb4yZsi54WmuccVyeeG79y5M1q2bIly5cqhQoUKMDc3R79+/TBo0CBYWFhIA7iNGDFC7XkaN26ssu3nn39Gy5Yt4erqiurVqwOA1A2xSpUqcHd3x+zZswFkDLAp70e9ePFiHe+UsYKjS+7NKe9aWVmptKZSR7Hl05kz2Y9LJoRA586d8eGHHwLIfsByeXldmJqaolOnTvD09MSYMWN0OpYZL+7awPRmxoF7WDRA9SEiKyEE5lWugnmhGSN3Z60EAIAxY8bg119/BaD5w4mJiQns7OwAQGX8hKpVq+oSOmNFlbonA1JaIVoHYB0AuLm5kXwwpvT0dOnBg4hw7do1tGjRAgEBAbC3t4eZmZn0txsXFwcrKyukp6djx44dsLCwwKtXr3D48GEMHz4co0ePVvogv3XrVowYMQJHjx5F7969cf78eVSsWFGpohDI6Ge9dOlSfPHFFzh27BhevXqFdevW4Z9//kHNmjWVyspkMgghMHToUISGhqJ169a4cuUKunXrhqCgIDg6OuK///5DmTJlcOjQIUycOBH37t3D0qVLce3aNURHR2P79u347LPPVCoVFG3ZsgX16tVDixYtIIRAamoqTE1N1eYxIKMpeenSpSGEgKWlJUxMTKSuV9HR0VJ+i42NhbW1NdLS0mBubg4iQmRkJEqUKKG2P+vX477HttnX0O/HTfj7B9Vmqpoo5t6iyt7eHkFBQahUqRJkMhkiIjJGTJ8xYwYWLVoEa2trxMXFAcj4AL1s2TJUrVoVf/75J9LT0/HHH3/AzMxMZYyKOnXqICkpCZ9++inmz5+PkSNHYu/evTmOl3Hx4kV06NABZ8+exZs3b5CcnIzy5cujZ8+e+O6777B161ZMnjwZVapUQbNmzfDPP/9g3rx5EEKgZMmSICIIIXD69Gk4Ozvj0aNH6NatGwAgKioKQgiULVsWlpaWaNu2LSpXrowtW7bAxMQEly5dQvPmzbF06VJ88MEHKF26NOzt7XHu3DkMHDgQT548waVLlzB69Ogcf65paWkwMzNDSkoKzM3NMWLECNjb22Pr1q345ptvEBoaCldXVzx8+BB79uxBx44dERMTgwEDBmDOnDkq59q3bx/69OkjVRjKuwKlpKQgPDwc9vb2Wo37wZghlO04Em+OZjynNmzYEA8ePNBYVpu86+/vD2dnZzx9+lSr63fu3BlBQUE5lpMPeKw484Kiy5cv4/Tp01pdkzGDN9/SduFmXsZBsWuD47QjqgXUdG3YvHkz+TjXk5pKXblyReUwxe4NUVFR0vZZs2ZJ23///XeKi4ujzZs3Z9ski7G8gpE2r4WOXRv0mXePHz9OHh4elJqaqrdr5EZ8fDyFhYUZOgydyXNvoylHiYjI19eXXr9+LeXHxdO/IpprQ3vXL1Vq7qqYe41xKV26tMZ9169fp7dv39KOHTsIAH344YfUsGFDaf/y5cspKiqKwsLCKDU1lWbNmkUPHz5U+dk+efKEYmJiKDg4mIiIAgIC6PHjxyrlUlNTKT4+ni5cuED//vuvyrzpnp6etHPnTr28/48fP6ZLly7p5dyFibHmXl0XfuY1Hoq5V/633rJly2y7NuSUd+WaNGmisu/gwYNK5RRfx8fH019//aX2nJMnTyYiopUrVxIAOnnyZK7vOWucrGjLLu9yiwRW6Kj7Jk/exMrCwkJjiwRTU1NYWVlh5MiR+gyPMWN2E0AdIUQNAEEAhgL4OPtD9KN79+6GuGyOSpUqpbELhTGpV68eAGDy5MmwsrLCtG9HASv+wcCPPsLKpBL4+uuvDRxh/nj+/DlmzJiBv//+W2Vfy5YtAbxrkWZnZ6c0/aOpqanS/yfz589Xe43atWsDeDeyuYODg9pyZmZmMDMzkwYFvHjxIs6fP4+uXbvCxMQEtWvXRosWLXS8Q+3UqVOHpzJjrJDQZhaf4OBgqRWtJln/L6pSpQr69esH4F23oTFjxqBKlSpS+S+//FJpIGA5+XP0+PHj0aJFizzlouDg4By7RrDigSsSmMFl7Yelrl+WvHIho2JMvaLw8M+YPhFRmhBiIoCTAEwB/E1EPJl9ESbNRhP1bowY+QfswsTOzk5p1g4A+Pvvv/H5558DAG7duoXSpUvjzZs30pTA+/fvR6VKlbBu3TqsWLFC7ZTAANChQwf8/fff+Oijj5CYmCg9dCuOt6MPLi4uKt1zGGNFnzYVCdlNTy63detW/PLLL9i6dSuqVasGH5+MCZYCAgKkStB169ZpFZP82drMzCzPFZryHMqY3gZbFEL8JoR4JIS4J4Q4KIQoq7BvRuYc5n5CiG76ioEZlufMzlqVE0Kgo0IfsOxaJGQlr1iwsLDAqFGjchElY8ULER0jorpEVIuIFhg6Hpa//p3QJscyitMFdtSy/21effbZZ9nud3JyUlo/e/asUk53dnaGs7MzWrdujSdPnuDly5cYMGAAgHet0eTef/99fP/999K6EAKjRo2CjY0NKleujB9//BEA1E5PyhhjuRGy7V3OsbCwyHba2HIH9ms1mGHt2rWxZcsWpKamwt/fX8pzDg4OSjkvOy1atEDXrl2VciJj+UWfszacBtCQiBoDeIyMvrgQQjRARnNaFwDdAfyVObc5K2LuB8ZoVU4IARdLS6V1dWUAqIx6Ljd79uxsB0RjjLHiwC8kLscyit+SK+ZeTTS1YChTpgwqVqyoVVyKM1xktXv3buzYsUNpm3ykfvmAYIozWNSuXVsa7V+d48ePY+nSpRr3f/fdd/j444/VNv9ljLHcMK/gKL0+fPgwFi5cCP8XL5TKyPNg6iM/lWfdI0eOaDy34mDGuqpQoQJOnjzJrQiYXuitIoGIThGRfIjj6wDknQr7AthFRMlE9ALAUwD66TTIDOqLrV5al/1Loc+pumSZnp4OQHU2Bl2np2GMsaJs2v77OZYpV64coqKiACjnXk3U9YUtU6YMXrx4IU0TuH///mzPkd1D8ODBg1G5cmVp/c2bN1JFgre3Nzw8PHR6iM6u0gLImPln+/btsLW11fqcjDGWHdse30qv5fkrK/k4K29nzlTZp820rLmR2woIxrRRUGMkfA5gd+Zre2RULMipzGMuJ4QYC2AsgGy/fWDGTZsxEuRTc6mb9owxxphu8loJ6+rqinLlyknr6h5W+/bti0OHDgF4l8M1UZyKTPG8DRs21DqmQ4cO4b///tO6PGOMFRZCCJw6dSrfWw5wRQLTpzz9dgkhzgghHqhZ+iqUmQUgDcB2+SY1p1I7gh4RrSMiNyJy07b5JDM+WQdQVDcidt26deHq6oo1a9YUVFiMMVZk6VKRkJqaKr0eNGiQ0vGazhMUFIQ9e/ZIrciGDBkCAEotD3744Qf8888/ANS3etBVnz59sH79+jyfhzHG9GHVqlWoUKGCxv1dunRBo0aN8vWa3HKX6VOeKhKI6AMiaqhmOQQAQoiRAHoDGE7vPi0GAqimcBoHAK/zEgcrnBb21z4Zzg0Jxscff4y4uDi1fW4tLS3h7e2Ndu3aKW3PbhYHxhgrbqZ2c9aqnPzhcm5IcA4l381u4O3tjfHjxyvtk3c7y5qLK1eujBIlSmDnzp1wdXVF9+7dQUSoX7++VGbBggUYPnw4AP7WjDFm3KIvbs6xzODBgxEeHo4qP/2ksi8/P/AHBgbijz/+AMC5lemXPmdt6A5gGoA+RKQ4NPJhAEOFEBaZc5nXAXBDX3Eww/m4pXbdUYQQ2BuTMTCjtqPQMsYYU9XXtapW5eQPrfLcmx35LA8lSpSQKgzkx/fq1QtARlcHRfKH1169esHb21vquqDY8kCxOwNjjBmzeJ+LWpctN2SwHiMB7O3tYW+f0WucWyQwfdJnNdUqANYATgsh7ggh1gJA5pzlewD4ADgBYAIRpesxDmYgTtOPal3Wx7meHiNhjLHiod2S81qVkz9capN75S0S1FUkjBs3DjExMSqDi2l6eM2PLgyMMVbY2I//W+uyvvXq51woj+S5mlskMH3S29cBRFQ7m30LAPD85YwxxpgB6PItVdmyZQFkTMGYtSJBCKHTILgdO3bEqVOn8ODBA+2DZYwxphOZTAaAKxKYfvFvFys0eLwDxhgrGLpUJPz7779YvXo17O3tpYdSc3PzXF13+vTp8PPzg4uLi8q+ihUrYsqUKbk6L2OMFVY9e/Ys8GtyRQIrCNxBkelN53qVtConhMD5t2/1HA1jjBV9bWvZalVOXpGQXe51dXXF4MGDUa1aNXz11VcAAHd3d0yaNCnXH/hNTExQt25dtfvCwsJydU7GGDO0xJd3NO77a/Vq/LXjiLRu5e6uUqZmzZr5Go+8IoHHSGD6xBUJTG82ftZc67ITggIxTI+xMMZYcbBkYGOtyskfLicEBarsi4iIgEwmUzuDjqmpKZYvX672nCdPnkS3bt10iJYxxoqGN8f/1LpstbXKU5kfO3YMVapUydd4eIwEVhD4t4vpzejNN7Uuu9reQY+RMMZY8TBt3z2tyskrEtTlXltbW7WVCDnp2rWrzscwxlhRUL7HN1qXDRj/pdK6Pj7st23bFgAwatSofD83Y3LcIoHpzdlH2jdTfd/KCpfzcC1uusUYY8CVZ5FalZPnzPd5yl3GGMuzko6uWpd96+GhtzjkatSowWOPMb3jFgmsSOBkyRhj2uPKV8YYy38rV67UumzVqlX1GAlj+scVCYwxVkQIIX4TQjwSQtwTQhwUQpTN3O4khEgUQtzJXNYaOFRmYFyRwBhj+a9du3Zal1U3ew1jxoQrEpje+C/upXXZBn6PuFUBY3l3GkBDImoM4DGAGQr7nhGRa+Yy3jDhMX27PO19rcrJKxIa+D3SZziMMVYsBK39HIB2lbT1H/kCeNealit2mbHiigSmNzs8X2lVTgiBQWXK6Dkaxoo+IjpFRGmZq9cB8CimxcyhO6+1Kid/cJXn3suX8zJKzTu3bt2Cp6dnvpyLMcaMRekGHQBoVykQtXuP0jpXJDBjxRUJTG9mHryvddmfqtjl6VqchBlT8TmA4wrrNYQQ3kKIC0KI9poOEkKMFUJ4CSG8wsPD9R8ly1e/nfTTqpw8Z8pzb6lSpfLl+u+99x5atGiRL+dijDFjUbbDZ1qXDZk7FwDQuHHGdL25mSWHscKAKxJYkcDdIlhxIYQ4I4R4oGbpq1BmFoA0ANszNwUDqE5ETQF8D2CHEMJG3fmJaB0RuRGRGz/cFB9cGcsYY3mnSy5dvHgxLl++DFdXV/0FxJge8fSPjDFmRIjog+z2CyFGAugNoDNl1rARUTKA5MzXt4QQzwDUBeCl53AZY4wxpoa5uTnatm1r6DAYyzVukcD0ZsOnblqX/SowME/X4m/TGAOEEN0BTAPQh4gSFLZXFEKYZr6uCaAOgOeGiZLp05KPGulUPq+5lzGmecaczH0zhBBPhRB+QohuBgyT6VHk8RVal3X46y89RsJYwdF7RYIQYooQgoQQFRS2cVItBho5aD+A4sOkJD1GwlixsQqANYDTWaZ57ADgnhDiLoB9AMYT0RtDBcn0x7mKtU7lOfcyli/UzpgjhGgAYCgAFwDdAfwlr9RlRUtqxEsA2n2xZcnTPrIiQq8VCUKIagC6AHilsI2TajHRcuFZrcteqF2bxzlgLI+IqDYRVcs6zSMR7SciFyJqQkTvEdF/ho6V6Ue/1Vd1Kn+hdm0A3KqLsbzIZsacvgB2EVEyEb0A8BQAj0ZaBFUZsQwAYGaWc6/xpx076jscxgqEvlskLAfwAwDFT4icVJmSvDzAdsxMxtzHjDHG8qZWrVqGDoGxokBxxhx7AAEK+wIzt6ngGXOKBmdnZ0OHwFiB0dtgi0KIPgCCiOhulg+K9siorZXLNqkCGAsA1atX11OkzJh17doVsbGxsLbWrTkvY4yxdypXrgwfHx/IZDJDh8JYoSSEOAOgippds4joUGaZrDPmqPumRG3zSyJaB2AdALi5uXETTSNkaWnJrbtYsZKnioTskiqAmQC6qjtMzTZOqkXQsBbVtC67Jzo619fhSgTGGMvQx9VO67K7d+/Gnm++BQBUqaLuv3LGmFxuZsxBxpdlig9DDgBe6ydCZkjxvhe07qJbdtAgPUfDWMHIU0WCpqQqhGgEoAYAeWsEBwC3hRAtwEm12Fg0oLHWZeeFhmCIHmNhjLHi4Idu9bQuO2DAAJgP4czLWF4pzJjTUXHGHACHAewQQiwDUBUZM+bcMECITM+iL2zRuiLB7pef9RwNYwVDL2MkENF9IqpERE5E5ISMyoP3iCgEGUl1qBDCQghRA5xUi6zeKy9pXXavo5P+AmGMsWJi9JabOpXn3MtYvlA7Yw4RPQSwB4APgBMAJhBRuuHCZPpSceCPWpd9MeAjPUbCWMHR2xgJmhDRQyGEPKmmgZNqkfUgKFbrsi6Wltinx1gYY6w48At5q3VZIQRcLC31GA1jxQMR1c5m3wIACwowHGYAJSo4ad0iIcnHR8/RMFYw9D1rAwAgs2VChML6AiKqRUTORHQ8u2Pzg6mpKVxdXeHi4oImTZpg2bJl0oBSHh4eKFOmDFxdXaXlzJkzAIATJ07A2dkZtWvXxuLFi6XzDRkyRCrr5OQEV1dXtdcVQmDy5MnS+u+//4558+bp7T6NHU//yFjRYqjcK7+ufFE8B2OMFXWGyL0HDx5UOqerqytMTExw/LjeH/MZYwZS4C0SDKFkyZK4c+cOACAsLAwff/wxYmJi8NNPPwEA2rdvjyNHjigdk56ejgkTJuD06dNwcHBA8+bN0adPHzRo0AC7d++Wyk2ePBllypRRe10LCwscOHAAM2bMQIUKFfRzc4VYJWsLrcoJIRCWlqrnaBhjBc1QuVfxusWNrVUJrcty7mWsaDJE7u3fvz/69+8vra9btw7bt29Ht27d9HCHhU96fJTWX4iZVayo52gYKxgF0iKhMKlUqRLWrVuHVatWZfsHf+PGDdSuXRs1a9ZEiRIlMHToUBw6dEipDBFhz549GDZsmNpzmJmZYezYsVi+fHm+3oOxuDEr2wGOlbg/e6bHSBhjhlaQubc4OzShrU7lOfcyVrQZIvc+fvwYP//8M7Zt2wYTk+LxUSNk22StKxLqXLqo52gYKxjF4687i5o1a0ImkyEsLAwAcOnSJaWmWM+ePUNQUBCqVXs3uYSDgwOCgoKUznPp0iVUrlwZderU0XitCRMmYPv27YiJidHPzRRiy08/1qpceno6JthWKDb/2TBWXBVU7k1MTFQ6r+K3aUXdxssvtC4rhMAE2+LXWo6x4qYgn3tTU1Px8ccf4/fff0f16tX1c0OFkLVbX63Lhq9cpcdIGCs4xfaTm2KtYfv27XHnzh1pqVWrltpaxcypLCU7d+7MsVbWxsYGn376Kf7888/8CdyIrDj7RKtyCQkJmFChAkqVKqXniBhjhlYQuVferFe+DClGUxxuuuKvdVkhBCYUw253jBVHBfXcO2fOHLi4uGDo0KH5E7iRsHHrq3WLhIjVq/UcDWMFo1iMkZDV8+fPYWpqikqVKsHX11dtGQcHBwQEBEjrgYGBqFq1qrSelpaGAwcO4NatWzleb9KkSXjvvfcwatSovAdfBMXHxwMASpcubeBIGGP6VNC5lzHGWMHlXg8PD+zfvx+3b9/Ov+CNCA8azoqbYtciITw8HOPHj8fEiRNValoVNW/eHE+ePMGLFy+QkpKCXbt2oU+fPtL+M2fOoF69enBwcMjxmuXLl8fgwYOxcePGfLmHooYrEhgr+gyRexljrLgrqNwbFRWFUaNGYevWrbC2ts73+zAGXJHAiptiUZEg7y/r4uKCDz74AF27dsXcuXOl/Vn7iu3btw9mZmZYtWoVunXrhvr162Pw4MFwcXGRjtm1a5dK867Xr1+jZ8+eamOYPHkyIiIi1O4rqv6b2E6rcg4ODhjo/0Lp58sY050QYp4QIkgIcSdz6amwb4YQ4qkQwk8IUSDDaBsq92YdI2H69On6v9lCYuNIN53KD/R/gZYtW+opGsaYIRgi965duxZhYWH48ssvi+UYNWH7f0LbttoNduu0b5+eo2GsYAhjqT1zc3MjLy8vQ4fBchAbkYhts69hxPzWeJmUgkYOWaYIinoJrGgMfHsPKOcIIKMG9+q2bWgzYkS2teWMFRZCiFtEpNsntgIghJgH4C0R/Z5lewMAOwG0AFAVwBkAdYkoPbvzcd41HvLc22JiQzRvWEm1gJrcCwB3DxyAU+fOGqfSZKwwKay5N79x7jUe8txboWdJ9HB3gY2NzbudGvJu4oOHKNmQvzxjxiG7vFssWiQww/hw1WWtygkhUH7hIq5EYEx/+gLYRUTJRPQCwFNkVCqwImb0Ft0+fJSYOYsrERhjLI8WXIpSrkTIhv/AgXqOhrGCwRUJjDFWtEwUQtwTQvwthCiXuc0eQIBCmcDMbSqEEGOFEF5CCK/w8HB9x8oYY4wxxowQVyQwxpgREUKcEUI8ULP0BbAGQC0ArgCCASyVH6bmVGr7tRHROiJyIyK3ihUr6uMWGGOMMcaYkTOaMRKEEOEAXho6jkwVABjzyInGHj/A91BYGPs95DZ+RyIq1J+yhRBOAI4QUUMhxAwAIKJFmftOAphHRNdyOAfn3fzF91A4GPs9GHv8QBHOvfmBc2++43swPGOPHyi+96Ax7xpNRUJhIoTwMubBfow9foDvobAw9nsw9vizEkLYEVFw5uvvALQkoqFCCBcAO/BusMWzAOrkNNhiYVIU3iu+h8LB2O/B2OMHisY9FBdF4b3iezA8Y48f4HtQxyy/TsQYY8zgfhVCuCKj24I/gHEAQEQPhRB7APgASAMwwZgqERhjjDHGWOHCFQmMMVZEENGIbPYtALCgAMNhjDHGGGNFFA+2mDvrDB1AHhl7/ADfQ2Fh7Pdg7PEXJ0XhveJ7KByM/R6MPX6gaNxDcVEU3iu+B8Mz9vgBvgcVPEYCY4wxxhhjjDHGtMYtEhhjjDHGGGOMMaY1rkhgjDHGGGOMMcaY1rgiIQdCCH8hxH0hxB0hhFfmtvJCiNNCiCeZ/5YzcIzdhRB+QoinQojpCtu/ztz+UAjxq4ZjVe5Pl+MLghDibyFEmBDigcK2QvUeZEcIUU0IcV4I4Zv5s/w2c7sx3YOlEOKGEOJu5j38lLndaO4BAIQQpkIIbyHEkcx1o4q/OCnsubeo593MWDj3GhjnXlbQOPfyM29eGXvuLSp5F9B/7uWKBO28T0SuCvNuTgdwlojqIGM+9umaD9UvIYQpgNUAegBoAGCYEKKBEOJ9AH0BNCYiFwC/Z3OarPcHHY/Xt80AumfZVmjeAy2kAZhMRPUBtAIwQQjRAMZ1D8kAOhFREwCuALoLIVrBuO4BAL4F4KuwbmzxFzeFMvcWk7wLcO4tDDj3MkPg3Gs4m2HceRcw/txbVPIuoO/cS0S8ZLMgYy72Clm2+QGwy3xtB8DPgPG1BnBSYX1G5rIHwAe5ub/M7VodX4D36QTgQWF8D3JxL4cAdDHWewBQCsBtAC2N6R4AOGQmzU4Ajhj771FRXwpz7i0ueTczJs69hWTh3MtLAb1fnHsN/x4UmbybGbPR5l5jzbuZMeo993KLhJwRgFNCiFtCiLGZ2yoTUTAAZP5byWDRAfYAAhTWAzO31QXQXgjhKYS4IIRoDgBCiKpCiGMK5dXdHzQdX4gUpvdAa0IIJwBNAXjCyO4hs3nUHQBhAE4TkbHdwx8AfgAgU9hmTPEXN4U59xbXvAsUnvdAJ5x7DeoPcO41Jpx7C1/uLSw/f50Za+4tAnkXKIDca5aXg4uJtkT0WghRCcBpIcQjQweUhVCzjZDx3pZDRpOi5gD2CCFqEtFrAD0VyqrcHxFdzOZ4ni80l4QQVgD2A5hERLFCqHvrCi8iSgfgKoQoC+CgEKKhgUPSmhCiN4AwIrolhHA3cDhMO4U593LeNSKcew2Hc69R4tzLuTdfGHPuNea8CxRc7uUWCTnITEIgojAABwG0ABAqhLADgMx/wwwXIQIBVFNYdwDwOnP7AcpwAxm1URWyHqzh/qDt8QZUmN6DHAkhzJGRTLcT0YHMzUZ1D3JEFA3AAxl9+IzlHtoC6COE8AewC0AnIcQ/MJ74i51CnnuLa94FCs97oBXOvQbHudfIcO4tlLm3sPz8tVZUcq+R5l2ggHIvVyRkQwhRWghhLX8NoCuABwAOAxiZWWwkMvr+GMpNAHWEEDWEECUADEVGfP8io08MhBB1AZQAEKF4YDb3B22ON7DC9B5kS2RUwW4E4EtEyxR2GdM9VMyslYUQoiSADwA8gpHcAxHNICIHInJCxt/IOSL6BEYSf3FjBLm3uOZdoPC8Bzni3Gt4nHuNC+feQpt7C8vPXyvGnnuNPe8CBZh71Q2cwIs0SEVNAHczl4cAZmVut0XG4BVPMv8tb+A4ewJ4DOCZQowlAPyDjCR5GxmjjwJAVQDHsru/7I430P3tBBAMIBUZtcajC9t7kEP87ZDR9O4egDuZS08ju4fGALwz7+EBgB8ztxvNPSjcizveDTpjdPEXh8UYcm9Rz7uZ8XDuNfw9cO7lpSDfI869/MybH/dg1Lm3KOXdzLj1lntF5kkZY4wxxhhjjDHGcsRdGxhjjDHGGGOMMaY1g1YkZE6t4S2EOGLIOBhjjDHGGGOMMaYdQ7dI+BaAr4FjYIwxxhhjjDHGmJYMVpEghHAA0AvABkPFwBhjjDHGGGOMMd2YGfDafwD4AYC1pgJCiLEAxgJA6dKlm9WrV69gImP5Ij1NhsigeFAZc1Qua6mhUAoQ+hCo7AKYlpA2p4WFwaxSpQKKlDHd3Lp1K4KIKho6Dn2rUKECOTk5GToMpiPOvayo4tzLCit53rW1L42IhBRUtuHcy4qG7PKuQSoShBC9AYQR0S0hhLumckS0DsA6AHBzcyMvL6+CCZDli9iIRGybfQ0edcywd3IH9YWiXgIrGgPf/geUc5Q2vxjwEWoc2F9AkTKmGyHES0PHUBCcnJzAedf4cO5lRRXnXlZYyfPuiPmt8fFOLxz5ur36gpx7mZHJLu8aqmtDWwB9hBD+AHYB6CSE+MdAsTA92ziyuc7HcDJljLG84dzLGGMFT2MlQjY49zJjZJCKBCKaQUQOROQEYCiAc0T0iSFiYfr368lHOh/zfOoPuH//vh6iYYyx4iE3uTd4zo+4fPkykpOT9RARY4wVfTMO3NP5mHvjv0RsbKweomFMfww9awMrBg7fCdb5mOT//kPjxo31EA1jjBUPucm90Xv3on379pg8ebIeImKMsaJv540AnconJibC3MMD/fv311NEjOmHIQdbBAAQkQcADwOHwRhjjLFM3CKMMcYKRlpaGgDgxo0bBo6EMd1wiwTGGGOMKRFCAADi4uKQnp5u4GgYY4wxVthwRQLTu38ntNH5mI5Pn+ohEsYYKz7ymntlMhlsbGwwbty4/AyLMcaKNM+ZnXU+hp97mTHiigSmd34hcTof42KpYf5dxhhjWslr7iUiAMCmTZvyLSbGGCvq7gfG6HwMP/cyY8QVCUzvpu3Xva/tXw4OeoiEMcaKj7zmXnlFgvxfxhhjOftiq5fOx/BzLzNGXJHAGGOMMY24IoExxhhjWXFFAmOMMcaQkJAgvRZCcAUCY4wxxjQy+PSPrOib2s1Z52Pmhug+/zljjLF3dM29vr6+WKKQe7kigTHGdLewfyOdj5kbEsw5lxkdbpHA9K6va1Wdj9kbo/tANYwxxt7RNffGx8cr5V5+qGWMMd193LK6zsfwcy8zRlyRwPSu3ZLzOh/j41xPD5EwxljxoWvu7dixo1Lu5YoExhjTndP0ozofw8+9zBhxRQJjjDHGlHh4eChVJDx69MiA0TDGGGOssOGKBFaoNW/eHEII3L1719ChMMZYsaJYkVC/fn0DRsIYY0VXeHg4gIxBbhkzJlyRwPSubS1bnY85//YtAMDLK2Mu3gMHDuRrTIwVR0KIakKI80IIXyHEQyHEt4aOielPXnIvwF0bGGMsNzrXq6RT+bp16+L827ecc5nR4YoEpndLBjbW+ZgJQYF6iISxYi8NwGQiqg+gFYAJQogGBo6J6QnnXsYYK3gbP2uuU/n09HTOvcwocUUC07tp++7pfMxqewc9RMJY8UZEwUR0O/N1HABfAPaGjYrpS15zL387xhhjuhu9+abOx/BzLzNGXJHA9O7Ks0idj3nfykppPT09HW8VmtwyxvJGCOEEoCkAzyzbxwohvIQQXvJ+m8w45TX31qxZMz/DYYyxYuHsozCdj8n63MuYMTBIRQL302W6WrBgAaytrSGTyQwdCmNGTwhhBWA/gElEFKu4j4jWEZEbEblVrFjRMAGyQoErkhhjjDGmiZmBrivvp3tbCGEN4JYQ4jQR+RgoHmYkZDIZTEy4IQ1juSWEMEdGJcJ2IuJRTBljjDHGmM4M8omM++kWL5enva/zMQ381M9Zzn12Gcs9kTG31EYAvkS0zNDxMP3Kz9zLGMs9IcTfQogwIcQDQ8fC9M9/cS+dj+Hcy4yRwb/a1dRPN3Mf99UtAg7dea1T+YSEBAwqU0btPu7awFietAUwAkAnIcSdzKWnoYNi+qFr7gWgMfcyxvJkM4Duhg6CFYwdnq90PoZzLzNGBq1IyK6fLsB9dYuK30766VT+8OHD+KmKndp9XJHAWO4R0WUiEkTUmIhcM5djho6L6YeuuReAxtzLGMs9IroI4I2h42AFY+bB+zofw7mXGSODVSRwP12mSXaVBVyRwBhjjLGihlvhMsaMjaFmbeB+ukwjrkhgjDHGWHHCrXCLptOnT+P8+fOGDoMxvTDUrA3yfrr3hRB3MrfN5Ca2RdOSjxrpVD49PR1fBQaq3ZdTRcLr169hZ2eHjLoqxhgrvnTNvQA05l7GGGPa2fCpm/S6a9euAHIeLJxzLzNGhpq1gfvpFiPOVax1Ki+TyfAwKUntPk9PT4SGhqrd5+vrC3t7e6xYsULnGBljrKjRNfcC0Jh7GWOMaaeRg+4DJz5MSkJ8fDzPTsaMisFnbWBFX7/VV3UqL5PJcKF2bbX7unXrhsaNG6vd5+PjAwC4ePGibgEyxlgRpGvuBaAx9zLGck8IsRPANQDOQohAIcRoQ8fE9KflwrM6HyPPvQEBAfkdDmN6Y6iuDYxplJ6enu3+sLAwtdvj4+MBAKVKlcr3mBhjrLiTdxmTyWTcfYwxHRDRMEPHwAwvLS0N0ZGRqJBNGSEEiAjPnz9HrVq1Ciw2xnKDWySwQie3AyomJCQAAEqXLp2f4TDGGFOQkJCQY4UvY4wxZV9//TXc3NxyLLd69WrUrl0bN2/eLICoGMs9rkhgetfHVbe5cWUyGfZER+t8ncTERABAyZIlsWfPHpw6dUrnczDGWFGha+4FoFXuLV++POzseM5zxhhTZ1iLamq379+/X+Mxirn3ypUrAIAnT57ka1yM5Tfu2sD07odu9XQqL5PJMC80ROfrpKWlAQDMzMwwZMgQADmPkssYY0WVrrkXgFa5NyUlBTzPPWOMqbdoQMZYXkFBQVofI8+93t7eSE5O1ktcjOU3bpHA9G70Ft2aZslkMux1dNL5OvJKA+67yxhjuudeALnKvYwxxt7pvfISAGDcuHFK27P7ckuee/v27YuDBw/mWJ6xwoArEpje+YW81am8TCaDi6WlzteRJ9yXL1/qfCxjjBU1uuTe169fA0Cuci9jjLF3HgTFAlAd8yu7igHOvcwYcUUCK3R0HWzx+vXreP78ubS+d+9e6XVMTEy+xcUYY0XV9evXdT4mODhYD5FkiIuL09u5GWOsIGStOOAWBqyo4YoEpne2ViV0Kp+eno6wtNRsy0RHRyM1NaNM69atUatWLbUJ2sHBQadrM8ZYUaFL7k1KSgKAHHOvoqpVqwIA7t+/L2178+aN1sdr4uXlBRsbGxw4cCDP52KMsYJWydpC52N0yb2MFRZckcD07tCEtjqVl8lkcH/2LNsy5cqVw8iRI5W2qatIePtWuWlvSEgI5syZk+spJhljzFjoknvlg9XmlHuzWr9+PRo3bozOnTtjy5YtsLW1hbe3t0q55ORkBAYGanVOeeuIc+fO6RQLY4wVBjdmfQBAuxYIx48fB6A+93ILBlbYcUUC07uNl19oVe7Ro0eoX78+du/ejQm2FXIsv3PnTqWuC9ok3M8//xzz58/H5cuXERwcjNTUVHh7e+Py5ctaxcgYY8ZC29wLZLQEA6BV7lU0duxYABkf+j/77DMAGS0UpkyZAg8PDzx69AgXL17EsGHDUK1aNbx+/RqRkZHSmAzqyKfyteQ+w4wxI7T89GO127M+p54/fx49e/YEoHvuZaww4IoEpnebrvhrVW7RokV49OgRvL29MaGCdgn1jz/+kF5rU5Egf0CNjIxE1apVMXXqVLz33nto3769VtdjjDFjoW3uBd61SNA292bn4sWLWLp0Kd5//33Ur18fHTt2lEYht7e3R4UKFWBvbw9fX188e/ZMuracvJsFVyQwxozRirNPtCqnOI2uutyr7rl2xYoVOH/+fO6DYywfcUUCM6hr16/l6fh58+ZJr59l0yQ3LS0NRAQPDw8AGa0fAODvv//W6jqBgYEQQmTbZzcuLg4BAQFanY8xxgrS5cuX0adPH6nlQXxCAgCAQJg+fTpWrFiRb9fauHGjVuUaNGiA2rVro0WLFgAyuj/IZDJpDnWuSGCMGbOcBlvUZrryGTNmoEaNGtL6pEmT0KlTp/wJkLE84ooEVuCuXbsmDZQ4bNjHAIApU6di69ateTrvpk2b1G6vUqUKzM3NlR6U5SOCK44MPmnSJJw8eVLp2Nu3b+PcuXPw8fEBAPz1118ar9+xY0dUr14dABAfH5+7m2CMMT3o378//vvvP0RGRgIAZs+eDQCoUaMmlixZgocPHxosNvmYCpaWlhg+fLjUIuHSpUvw9vbGTz/9BCEEnj9/jq+++goPHz7EV199hZSUFADAv//+iydP1H8DmJKSotLiQW7VqlU4ffq0Hu6o8JHJZIiKijJ0GIwVK3mtSHj48CEWL14Mf3///A6NsXzBFQlM7zaOdJNeP3jwAG3atEGJEiXQtu27gcD27dundMxAf+379uYkNDQUAPDdd99J2+TfeClasWIFunfvjjlz5sDFxQUxMTFo1qwZOnfuLI1EHhcXh7S0NKn1Q1xcHFJSUlCqVCnpYfjSpUuwsrLCmTNnlM7v5+cn/SeSkpKCoKCgfLtHxhjLSjH3yj90AxkPr/KuBlnlZ+7VhfyBeteuXYiNzZiD/dSpU3jvvfeklme1atXCmjVrMHDgQKxZswbr16/HzJkz0b9/f4waNQphYWG4deuW0sO6hYUFunXrBgA4evQoXr16Je37+uuv0bVr12zjIiIkJiZmO6aDMZg6dSrKly+vMgBxYRIdHc2Dy7Ei4b+J7dRuzzoluWJFgrrcu2TJEq2u5+vryy1imUEYrCJBCNFdCOEnhHgqhJhuqDiY/sno3QwJ8tFpAeDq1auGCAcAsGzZMo375s+fDx8fH5QtW1baNmzYMADAjRs30K9fP9SuXRu1a9eGjY0NmjdvLo29AAAdOnQAACxfvhwzZsyAn58fvL29Ua9ePbRv3x6dO3dGx44d4eDggKSkJEybNg3jx4/H8uXL0atXL+k8np6eiI6OxubNm5UerhITE5VmndD04EVEuH79OsLCwnT74WhARPnykBccHIzHjx8rPdCru9aBAwekliuK1w8PD1f6UJQXgYGBiI6OzpdzGYvinntjY2Oxf/9+aV3TB0T5t+JyERER+fZ7V9DevHkjtZKSt5oqzNavX5/t/pcvXwIAJk6ciEWLFgEArly5gsqVK8PNzQ2WlpaYM2eOVP7cuXPw8/ND79694ejoCCEERo0aJe2XV1xcv34da9euBQCMHz8eQgiYmJjA3d0d9vb2WLZsmVIOlMlk+PnnnxEcHIyff/4ZN27cQEJCAq5evSp9+5+QkAB/f3/puPDwcFy9ehUjRozAmzdvsGzZMkRFRYGIcPXqVfj6+ur0s3r58iXGjRuHTz/9FBEREYiKisLGjRuVWuA9f/5c+j/v5MmTUusNIpJa5b148QKenp5ISUlBZGQkFi9ejMTERMTHxyMoKAgxMTEIDAyUusbIbdiwAf/995+0fvHiRaSkpODVq1fSPaenp+PBgwd4+/at9LOWO3LkCCIjI/Hy5UuUK1cu21Z/jBkbxXyh+GUWAKSlp2tsLaWtixcvonPnzmjQoIFR5HZW9AhD1P4KIUwBPAbQBUAggJsAhhGRj6Zj3Nzc6Ny5c/D390ejRo0gk8mQlJSE0qVLIzk5Gampqbh37x4qVKiAY8eOYcyYMVi9ejU++eQT+Pn5oW7dunjz5g127NiBunXrwtnZGU2bNoWpqSn8/f1x/vx5DB06FJ6enjh37hwWLFiAV69ewdzcHCYmJjhw4AB69eqFX3/9Ff3790ft2rURHh6OcuXK4fz587Czs0NcXByqV6+ORo0aYf78+ejTpw+io6PRpk0bJCUlwczMDGPHjsXw4cNx6dIlWFpaYuDAgVixYgVq1KiBXr164cSJE+jfvz/S09Ph5eUFJycnHDt2DC9fvsTUqVNhY2MDAKhfvz5ev34NBwcHvHnzBhYWFvD398e1a9cwaNAgrF+/Hp9//jlMTEywdOlSDB8+HOXKlYO/vz+sra1ha2uL1NRUODo6Sg/SFy9eROPGjVG+fHkkJyfDw8MD3bt3h42NDXx8fODj44Nbt26hbNmyqF27Nl69eoURI0bg0qVLaNu2LTZt2oQNGzZg3bp1cHJywk+zFqJjldH4n3USvmsQih07dqh8S+9YRsB/kjWc/ojDy5h3v4s+zvXQwO9RPv/mFT41a9bE8+fPlbYlJCTg2LFjGDhwoLTtwIEDOHz4MO7cuYM7d+4AyPig079/fxw/fhzOzs5o164dunbtCh8fH6xdu1ZqiQFkPBR36NABly5dgo2NDVxcXNCuXTsEBAQgODgYQ4cORcuWLTFr1ixs2rQJM2fOxM6dO1G/fn307NkTv/76K1asWIGGDRtiwIABqF69OkqVKgVzc3PY2tri8ePHeP/993Hx4kX07NkThw8fRr169XDt2jVYWVkhNjYWVapUQe/evVGlShUprgYNGqBRo0aoW7cuqlWrBjc3N7z33ntKP4+5c+fip59+UtrWsmVLbN68GVu3bpU+SHz22WeYPHkyypUrh3/++Qf79+/HzZs3cfnyZezatQuJiYno3bs3zp8/j2rVqsHOzg6ffPIJgIwmzj179kTLli2xevVqNGnSBKmpqXj48CFmz56NhQsXYuvWrejZsyeGDBmC8uXL3yIiNxgZXXNvyZIlad++fYiOjkZqaipatWqFqlWrSnkoNTUVW7Zsgbe3N7p37466detCJpMhPT0dNWvWxLp16zBw4ECsWrUKbdq0QXR0ND755BMQEUxMMuqxY2NjYWpqirdv36JKlSrw8fHBqVOn0LJlS1SqVAk7d+5E3759sXTpUtjZ2WH48OFwcXHB4cOHpXx07949xMXFoX///ujVqxf27NmDatWqoU6dOjhw4ABu3rwJKysrbNmyRbq36tWro2fPnli7di0OHTqE+Ph4mJmZISQkBDNnzsTbt29hYmKCtm3bIiUlBZ6enqhatSr69u0LExMTfP/993j27BnatWuHJUuWYN26dfjxxx+RlJSEmJgYzJo1C9u3b8fNmzcxYsQIREREoHz58qhQoQJq166N+/fvw9bWFlWrVpW/N9i6dSsePHiArVu3olevXqhZsyYmTpyImTNnolu3brh58ybKly8PKysrVKhQAQcOHECNGjUwffp0/PLLLzh37hy6du2KDq064/F/MvzPOgn3f++l+saCc6+iRo0a4fLlyyhTpgwAwMzMTOMDfqVKlVCpUiUMHz4cM2bMUNlfq1YtjeP11K9fX6miwNTUVOWDuVyrVq2kaTD//PNPeHp6wsLCAq1atcLYsWNx8uRJbNiwAVevXtXYus3FxQWVKlVSOzBb27ZtYWJigkuXLmHSpElKAxfL9ejRA/7+/kox29jYYPr06UhKSkJkZCRWr14NAOjcuTPu3r2LiIgIpXPY2dnhgw8+wLZt26RtQ4YMwdmzZ1XKyi1evBhjxozB4cOHsXLlShARunXrhl9++QXm5uZGmXt15ebmRl5eXoYOg+kgNiIR22Zfw4j5rdH493PwX9wLXbp00fjc23avNa76vPvbzSn3yj+vyVsxEBGsra2VWhlxix6mD0IIzXlX/i1fQS4AWgM4qbA+A8CMHI4hXvJ/sbW11du5y1tVplXjzlKjKUc1lnEsI4jm2pBjGaG03ce5nsF/Nrzwks3iZYjcWdC5V9P9m5iYGPrnz0s2C+deXorwYpS5V9elWbNmxIxLTHgCrRp3lmLCE8hx2hEiIurcubPK73Buc6+c4rqlpaXaMozlp+zyrqG6NtgDUOzME5i5TYkQYqwQwksI4SX/9orlr+LWrJuxYi7H3KuYdzWdpFy5cnoKr/iSt/JgjDHGclKvXj2VLnh+fn4GioYVV2YGuq66YUpJZQPROgDrgIxmXjdv3sSTJ09Qs2ZNxMTEoFy5coiIiEClSpVw5coVuLi4wNraGm/evIG/vz8cHBxgZmYGIQS8vb3RsWNHnDx5Eu+//z5KliwJExMTqYmQTCaDiYkJHj16hCpVqqBUqVK4ePEiypcvj6SkJISEhMDBwQGOjo549eoV6tWrh8TERGzatAk1a9aEqakpEhIS0KJFCzg6OuLZs2dISUmBg4MDQkNDpWmsIiIiYGNjg//++w+vX7/Gp59+im3btqFVq1Zo06YN4uPjUalSJYSFheGPP/7A+PHj8euvv6JHjx5wcXHB/fv30adPH9jY2MDU1FTxZ4W9e/eiWbNmqF69Oh4+fIiyZcvCzs4Ofn5+eP36Nbp06YLbt2/Dzc1NaYAXb29vNGjQAAEBAbh+/TqGDRuG48ePo1atWrC3t0fJkiWRnp6OQ4cO4fHjx4iOjsbt27cxY8YMyGQy2NnZoVy5cjh48CB27dqFcePGoUyZMlizYgMAINbrkNTl4+jRo1r9gqzW0OSxKGjZsiU8PT3V7vvxxx9RoUIF1KtXDwcOHMCTJ0/w6NEj9OjRA926dcOgQYMAABUqVMDChQvRtGlTNG/eHDVr1sSJEyfw4MEDnD59GmvWrFE677Vr1+Du7o6vvvoKy5cvx6JFixAeHo758+ejR48esLOzg5ubGypWrIjWrVvjzJkzcHR0RI8ePZCamoqAgAB8++236NmzJ/r164d58+ahffv22Lp1K5o2bYonT55g1apVKF26tNQnOD09HY6Ojrh9+zacnJxQtmxZhIWFYcCAAVJT3EuXLuHu3bvYvXs3xo8fj27duqF///64dOkSgIz+vK9evcK5c+ewc+dO6X6CgoIQEBCAwYMHS2MtjBs3DgsXLsS9e/ewevVq9OnTBw4ODqhVqxauXbuGEiVKwN/fH/b29jh//jxcXV2xcuVK9OjRA4MHD0bDhg3x4MEDREREoEWLFiAixMbGIjw8HImJifDx8UH//v0RFRUFFxeXfP+9KCA55l7FvFu7dm2aN28efHx8YGVlhZYtW8LFxQVVqlSRBo0KDg7Gpk2bMGLECCQlJWHr1q2YOHEiqlevjvPnz6NcuXIwMTFBWFgYunbtisjISNjZ2SE9PR0mJiYgIkRFRaFkyZIoVaoU7ty5g0ePHqFevXowMzODhYUFbty4gWXLlqFBgwbYtGkTbty4gVu3bsHJyQnbt29H7dq14enpia5du2LgwIEYMmQI1q5diwMHDqBOnTr47LPPpL+7OnXq4MmTJ5gzZw6OHz8OU1NTrFmzBq9evUJYWBiioqKwadMmaYpYuQ4dOqBGjRr47LPP8OTJE/Tq1Qs3b95Ex44dMXv2bJw7dw5//fUX9uzZg1atWuHDDz/EhQsXYGlpCXt7e1hbW8PPzw9du3ZV+n/n1KlTaNq0KSpXriz1nz948CDs7e3Ru3dvLF26FAsXLsT69evRpUsXpKamoly5cqhbty48PDxQpUoVtG7dGq9evcLff/+N5ORkiNQSQCKQeOeIzr8gRTn3ajJ//nz4+fmhbdu2GD9+fI7lFyxYgJSUFJUuV1nNmTMHv/zyi7R+/Phx/PDDD7h//z46d+6MMWPG4N69e1i4cKHScc2aNcOtW7cAZDRjJiKMHTsWCQkJaN26NZKTk0FE8PPzw7p161Su27p1a5iYmODKlSvYs2cPBg8erDa+CRMmYOvWrYiLi8OECROwevVqdOnSRZrJYsmSJZg2bRoAoESJEtIYIa1atULfvn0xY8YMqXvGokWLMG/ePKWBjN3c3ODl5YX+/ftLg3taWVnhxx9/xPz581XGS5BLSUnBpUuXUKZMGbi5ZbSmPXbsGGrVqgVnZ+dsf+aMFQbfdq6j8zG65l51lQbbtm3D/PnzAWR8LtBmeknG8kRTUwV9LshF1wZu5mV85M28Il7HUGpqKhER+fn5adXEqzAsdnZ2arc/ePBAej1s2DClfXPnzqVOnTpRvXr1qFmzZjRr1ixasGABpaenk6+vL3355Zd07do1AkCurq7k5+dHW7ZsoWvXrlFaWlqOP9Pbt2/TsGHDKC4uTtqWmppKycnJSuVkMhmlpaVRcnIyRUVF5ev7mlexsbG0Zs0akslkGst4enpSTEyMtC6TyejmzZv08uVL8vf3Vyqbnp6ut1g1gZE2r9U19xaVvKvpd00mk6ndl5CQIP3dpKenU2Jioj7Dy3eKTWzlsuaxwpx787oMHTqUAFCPHj3ozp07tG/fPrXlbt++TdOnT1f6HTh8+DAFBgbSpEmTCAAtXbqUIiIipGMU801oaCiFhoZSTEwMpaenU2pqKm3evJnMzc2pb9++RJTxOzZ8+HD677//iIgoJCSE/Pz8lN6vBw8eKDVRnjt3rvT/QVxcHL169Srb9zs1NZUaNmxIY8eOpfDwcLVlEhISaPHixbR06VKKjIyUtkdEREjx+Pr6EhHRsWPH6NixY0REFBwcTCkpKUREtH//frpw4QKFhoYqHb93716SyWQUFxdHDx8+pDVr1lDXrl2lMsnJydSyZUs6e/as9LNOSEigb775hp4/f04ymYySk5Pp7NmztH//fqW4T5w4QXfv3pXWjTX36roUldxbnKjLu506dcq33Cv/28muzMSJE2n69Om0ZcsWAkAvXrxQG2t6ejo9fvy4IH4srAjILu8a6mHWDMBzADUAlABwF4BLdsdwUjU+8qTqPu+00nZ5wluzZo3GhOpRq1a+P1yeO3dOel21atVsyzZs2JCIMh761CXzo0ePUkREhHRPw4cPJwAqH+g1efPmDSUkJORckBVKxvowq2vu5bxrnNTl3mXLlhEA+v3337N9mNVH7tVlGTFiRLb7R44cqTYvx8bGUkJCAn3++ecUFBREnp6eFBsbK93/2bNn6dixY5SSkkLnz58nb2/vbH+GAQEB5O7uLn0wP3jwoFQZkJPsKkk1efHiBc2cOZNevnwpfXBnqow19+q6cO41PvK8G/wygpx/2E+JiYk6VSTklHtTU1NJJpPplE+PHDmiNtb58+cTAHr48KHKvhYtWlCTJk30/NNixiS7vGuQgQeIKA3ARAAnAfgC2ENEDw0RC9O/yLfKU6b99ttvWLJkCczMNPesqWRmnu9xNG3aVHp969YtqZsAAKkrCJAxVdi5c+cAAJUrV0ZaWhq++OIL2Nvb45dffoEQAj179oStra10/IYNGxAaGooSJUpoFUu5cuVQsmTJfLgrxrTHubd4Ucy93333HYgIkydPBhHh5MmTao/Jj9z74YcfKq1XrlwZ0dHRCAoKwrVr11TK165dG0DG7Clbt27Fb7/9Ju3LGufy5ctRuXJlvHjxQprVAACsra1RsmRJbNy4EVWrVkWLFi1gbW0t7e/UqRN69OgBc3NzuLu7w9XVNdt7cHBwwPnz51GhQgUAQL9+/dC7d2+t7j83zYmdnJywYMECVK9eHebm+f//H2OsYKxcuRJJwgIbN26Uom4NqQABAABJREFUV+BrJafcm56ernGWF03Cw8Olmb4UybuPyqfSBTKeYy9evIgbN27g7t27Ol2HFV+GGiMBRHQMwDFDXZ8ZzpQpUwAAycnJCPW7CWAXHB0d8fKeP4CMqQ4xY2a+X1ex4qJKlSrYs2cPevbsiePHj8PBwQF3796VpjFUZGpqmuO85paWltI4GIwVZpx7GQDUrVsHOJ7xmih/+9LKx++ZOHEiVq1aBQAoU6YMypQpI013qcjKykqx1QwmTpyIqVOnAlCuAAaAUqVKAcj44O3k5ITbt2+jYsWK+RY7Y4zlxdq1a2E9oTnS09N1qkjIyQ8//IAXL17odMyoUaMAAB4eHtKU7ceOHZMqaHv27InIyEiUL18eY8aMyfZcRISFCxdi9OjRStN4s+LNYBUJrPhwrmKldruFhQVmzZwJrNiFo0eP4o7/G9ja2qJ8+fK4lGUk2vyg7lueHTt24OHDh7CxsYGNjQ2qV6+e79dljDFD0JR7AUBkjru5du1ape0P85B7X758CU9PT/zzzz8AgMaNGwOAyrdo9+/fR6NGjaR1+SB+8soMxYGEK1asCH9/fzg7OyM5OVml1VfWigbGGDO05JCnOONzFh4eHlofk1Pu/fPPP3Mdj7u7O4CMitht27Yp7bO1tUXp0qVVjjl48CD69esHIQROnjyJ4cOHIzIyEpcuXcKJEyekcjKZDAkJCbCy0vz/jToRERGIjo5GamoqatasCQsLC6X9UVFRmDp1KpYuXYoyZcrodG5WcHhORaZ3G0c2z7GMVenSaNeuHerXrw8AGPTSX6tz29vbY8OGDejXr5/a/b6+vlIXAsWHU7myZcuibdu2Wl2LMcaMiTa5t3u3bkrr2uZedapXr45BgwZJFQfyB8OsFQkNGzZUWpdXJMjJc7X84dHR0RHe3t743//+x6OQM8YKvZAtk/Dff//pdExecq+2Bg4cqJJvASA+Pl5l24ABA7Bnzx6cPXsW3bt3R2RkJICM7mbPnz/HokWLcO/ePUybNg3W1tYqU1HKffnll1ixYgWCg4MREPBu9ulq1aqhTp06aNCgARYsWKBy3IIFC7Bx40Zs3bo1t7ertcjISPz++++QyWQq+4gIwcHBeTp//fr1IYTQOFNNdlJSUjBnzhzExcUBABISEqTXcunp6YiIiJBmMctPObWq4YoEpne/nnyUcyEFQgjMq6xds6lLly5h9OjR0tRSWdWrVw+enp6YP39+tmMyMMZYUaNL7l2xYgUAaJ17syOvOLC1tcXHH3+c4wN1amqq0rqJiQk2bNggTYEIZDyIjR07Ns+xMWYIQojuQgg/IcRTIcR0Q8fDNAsICFDJSTkJDQ1VOqZ8t4k6Xzc/cq82jh8/rnXZoUOH4oMPPlDZ3q5dO8ycORPu7u74448/AAALFy5EYmIiXr58ialTp+Lo0aMIDQ3F2rVrMWnSJFStWhXVq1eHEAIVK1ZUqni4ffs2du/eDR8fHwAZFRvyiouAgACEhITgzp07aN26NaKjowEAe/fulSoz/ve//yE9PR1ff/01/vrrL3z66adIS0tTivn27dt48+YN0tPT8eGHH0rT3K5duxYVKlTA1KlT4eXlpXKvf/31F6pWrQpfX194eHggKioK8fHx0vgSsbGxOHLkCA4fPozAwECEh4fjk08+kabITk9Pl6aTfvz4sbT93LlzOHXqFAICAvD69WtcuHABjx8/xsGDB7F9+3b88ccfePjwISwsLDB//nxpmuBmzZrBxsYGAHDlyhWkpqaiWrVqqFixIhwdHXH69Gmlyvtz585h3rx52L17t9J9eXp6wtPTE3fv3sXTp09x4sQJPHr0SKXiYPTo0aq/GApEfvbf0Sc3NzdS9wazwis2IhHbZl/D/6yTcO+3nuoLRb0EVjQGvr0HlHMEkDE4TET7Dmjgp/kh+P79+7CwsECdOu/m6lX8pqp169bo0aMH5syZo3ScvIyx/N6zwkkIcYuI3Awdh75x3jVOuc29Qgj4ONfLNvdmR55Xu3btitOnT+PEiRPolqXFg9y///6LmJgYfPbZZ7Czs8Pr169zdU1WvBhj7hVCmAJ4DKALgEAANwEMIyIfTcc0bdqUtmzZAk9PT4wePRoxMTE4ffo0ZDIZOnbsiAMHDqBevXpISkpC165dkZCQgLCwMDx48AC9e/eGubk5Hj16hNTUVISFhaFTp05ISEjAxYsX0apVKzx+/BgnT55E//79cefOHVSsWBFdunRBUlISEhIS8ObNGwQGBiI6Ohrx8fEICgpCt27dsGPHDnTo0AG1atWClZUVZDIZ7t+/j9atW0tjlcjzgHzcE19fX9SoUQMlSpTAjBkzcP/+fSxevBixsbG4e/cuKleujJIlS6JLly7w9/eHEAIlSpRAjRo1EBwcjMTEREyePBl9+/ZF+fLl0bFjR3zxxRcoU6YMxo8fDwsLC1hZWaFSpUpISkrCoUOH4OXlherVqyMxMRFOTk5IS0vDs2fPULNmTXTq1AnXrl3D4MGD4eXlBVtbW1StWhXbt29H2bJlMXz4cLRp0wZbt25FdHQ0Xr9+jatXr6J27doICQmBi4sLIiIiUKlSJTx9+hRNmjTBBx98gPJWlfHz8B34cfvHsJ6wES+XqB+c1bGMgP8kazj9EYeXMe+eRfOSe41djRo1VMZ/MDExUdtCAABGjBih0kWjcePGuHfvnrTetWtXjBo1Cq6urjh48CBmzswYe6158+a4efMmAKBz5844e/asdMzXX3+Nmzdv4tdff8XLly8hhMAnn3wCAPjnn3/wySefwMbGBk2aNMGlS5cwdepUpcGBFdWvXx/BwcFwdHRUGbzy0KFD6Nu3rzY/GkmzZs0QFxeHx48fAwDatm2LK1euoE6dOnjy5InaYwYMGJAx7lymL7/8EklJSUhMTMSuXbuk7VWrVpX+D7a3t4e1tTWmTp2K5ORkfPXVVwCgOe9qms6hsC08FY7xkU+F02jKUc2F3vgTzbXJ+DdTWFgY+TjXy3ZKG3Vy2k9EFBsbqzQlGGO5AZ6CjBViuc29AHLMvdrk5alTpxIAunv3brZxpqamUpMmTTROUcZYVsaYewG0BnBSYX0GgBk5HJOnaVTLlClTINO18vJuKW9VmVaNO0vlrSqT47QjGstpmv4xL7mXF170vBSu6R8Zy052fWDr1q0rTVuT1aRJk3I8t7W1tdKUYIwxxvLXggULcP36dWmwRU3MzMxw584d9OrVq4AiY8wg7AEEKKwHZm5TIoQYK4TwEkLkuRmYvPk0Y4zpE3caZ3r374Q2OpUXQqDj06dq91WuXBnt2rVTu2/58uVSXy3GGCvudM29ADTmXnV++eUXeHl54ejRo+jSpYu03dzcHC1bttT52owVUeq+HSGVDUTrAKwDgEaNGtGgQYPwwQcfICQkROpGcP36dTg5OeHVq1fYuHEj5s2bhxUrVmDbtm3YuXMnWrZsCRsbG7i5ucHCwgL79u1DSEgIGjZsiMePH8Pf3x/Dhg3DggUL0LRpU7Ro0QLJycmYMmUKrl69irCwMNja2mLnzp2wsLBAcHAwYmJiEBgYiPr16yMhIQEvXrzA4MGDUbJkSSxZsgQVK1bE1q1bcffuXbz33nuwtLSEt7c33Nzc4OnpCUtLS6SnpyMqKgpRUVEYMmQIFi1ahP79+2PHjh1o1aoVSpcujZcvX6Jy5cqws7ODpaUlLCwscOvWLZQvXx7Hjx/H+fPn8dlnnyEgIABnzpzBixcv8M033+Do0aP45Zdf0KRJEwDA0aNHYWpqisqVK6N79+5wd3dH8+bN8eDBAzRo0ABjx45FtWrVsHjxYly7dg0ff/wxSpYsicTERMyfPx/Pnj1D9+7d8fHHH6NNmzY4cuQI0tLS0KhRI4SHh6NWrVo4fvw4YmJiMGvWLAwfPhwpKSm4f+tdt4TA1Z/q/EuiS+4t6r788kusWbMmT+do27YtWrZsierVq6t80Vi/fn34+vpi1apVmDhR/XgWly5dQvv27ZW2rV+/Hm/evMHKlSulsRKyU6tWLTx79kxp2x9//KHVF5/5TQgBIsLEiRORmJiIjRs3SvsGDx6MPXv2KJVfv359jlOCAoDBm3xpu3ATW+Mjb1577NorzYXUNK+NiIgg99JWapvXtGvXLttrmpiYUP369fPrFhhTC0bYvDY3C+dd45Tb3AtAY+5Vt3CXBFbQjDH3IhddG4py7vXx8SGZTFYg10pJSSmQ66SlpdG9W4+krg0la7XQmDc1dW3QJffm9yKEyNVxw4cPV7vthx9+oJ49e1JaWhpt2LCBAFDHjh2zPVejRo3I2dmZbt26Rd7e3gSA6tatS0II8vDwoK+//pq8vb0pLS2NUlNTacmSJWRjY0OPHz+m+Ph4ioiIoNu3b1OHDh3o+fPnKu+Pl5cXWVpa0rJly0gmkyl1c165ciUBIHNzc9q0aRN17txZ+t25desW7dixgw4ePKh0zhcvXtDDhw9pzZo10j2sWLGCZDIZeXt7048//kgymYxkMhnt37+fPDw86J9//lE6R2JiIoWGhtKff/4pnaNp06Z0//59unDhAnl4eNC0adNo8eLFRJTx+7xz505KSEig9PR0Sk5OJj8/PypRogQBIBMTEzp16hTt27ePNmzYQDt37iSZTEapqalKf3MymYxCQkJo8+bNFB8fT+np6dL1Fy1aRAAoMDCQ4uPjad68ednmXYMnWG2XopxUi6rc9tONjIzU2Fesbdu22V4zPj6ekpKS8usWGFPLGB9mc7Nw3jVO+h4joUePHgSAjh7N5vyM6YEx5l5ktP59DqAGgBIA7gJwye4Yzr3GR553C/sYCe7u7irbPv/8cwJAdnZ2Un4HIH1Azbp4e3tL9928eXP68ssv6datWwSAfvnlF6WfS1paGp05c4ZkMhldu3aNli5dSlevXqVly5YRAFq+fDkBoAEDBigd9/r1a5LJZPT27duCePsoKiqKwsLCdD4uPT2d/P39cy6Yg+TkZIqLi8vVsVevXiUA5OHhkevrA6APPviAiIiio6Oz7tOYd7lrAyt08jJPeKlSpfIxEsYYY1kNGDAAx48fR7169QwdCmOFHhGlCSEmAjgJwBTA30T00MBhsSKsUqVKCAsLU7vv/PnzKs/Zs2bNwsOHD7Fjxw6UKVMGFSpUAABERkbi7du3sLOzUyqvONbYjRs3pNf3799X+X/B1NQUnTt3BgC0atUKrVq1ApAxu9qoUaNQpkwZWFlZoX///krHya9ZunRpre87L8qWLZur40xMTODo6Jjn65coUQIlSpTI1bGtW7dGUlISLCwscn39hIQEmJubAwDKlCmj9XE82CIzKhkVY4wxxgxl9OjRSEhIQM2aNQ0dCmNGgYiOEVFdIqpFRAsMHQ/Tvx49ehT4Nc+cOQNA+YO+/EO8ourVq6Ny5coAgGXLlqFmzZq4fv06atasCVtbW4wfPx7jxo2DlZUVqlSpIh330UcfAYDGD84NGzaEmZn231GXLVsWQgh88cUXsLW11fo4piovlQgAULJkSZ3eOzlukcD0bmo3Z53KCyEwNyRYWjc3N0dqaioArkhgjDFt6Zp7ASjlXnUcHBwghEDJkiVzGxZjjBVtN3fi2NljmDBhAv766y+tDskp944dOxalS5fG8uXLNZaRVw4ofqg8ffo04uPjlSoXnj9/ntEsXcMHx6wDHa5cuRK1a9dGx44dsWLFilx94GRFE/8mML3r61pVp/JCCOxVmLooL10dGGOsuNI19wJQyr3qBAQEZLufMcaKvWeXAQBff/211hUJOeVe+aj7ANCiRQulLgUA8O233yI9PR3Au6bp06dPhxACVlZW2LVrF169egUgo7uBLhRnNrC3V5m5lBVj3LWB6V27Jed1Ki+EgI9zPaV1xhhjutE19wJQyr2MMcZyYehqALo9v+qSexs2bKh2e+PGjTF79mzs3r0bRIRFixZJ+4YMGYKpU6dqfQ3GtMEtEphR4a4NjDHGGGOssDMxyb/vaxUrJdSdVwgBIQR++eWXfLsmYzkp8BYJQojfhBCPhBD3hBAHhRBlCzoGVripq8G1srICwBUJjDGmL0OGDDF0CIwxVmTkZ0UC8O4ZmMcoYIWFIbo2nAbQkIgaA3gMYIYBYmAFqG0t3UZiFULg/Nu3SuunT58GwBUJjDGmLV1zr4WFhVLuZYwxpjtZ4D0AunVt0CX3yqdnVJQfUxAypqsCr0ggolNElJa5eh2AQ0HHwArWkoGNdT5mQlCg0jqPk8AYY7rRNfcKIVRyL2OMMd1YeP4NQLcWCTnlXsXnYFtbWwQHZ8zy0Lx5cxw5cgTffPNNLiJlLG8MPdji5wCOa9ophBgrhPASQniFh4cXYFgsP03bd0+n8kIIrLZ3UFqX4xYJjDGmHV1zLwCl3MsYY0w333//PZpNWg9Aty/BdM29VapUwePHj3H+/Hn06tUr37tRMKYNvfzWCSHOCCEeqFn6KpSZBSANwHZN5yGidUTkRkRuFStW1EeorABceRapU3khBN7PHBNBvi5PxlyRwFju8Pg0xU9ecy9jjDHdfP3117geEA9AuUVCUFCQStm6detKr3PKvdWqVVPZVqdOHZQuXTq3oTKWZ3qpSCCiD4iooZrlEAAIIUYC6A1gOPEnQ5YDIYSUQAcOHGjgaBgzWjw+DcsWdyFjjLH8o1iRULVqVaV99evXg5+fH6KionI8z549e3jqRlYoFfiwn0KI7gCmAehIRAkFfX1W+Kl7mLWzs0NsbKw0ewNjTDdEdEph9ToArpVjSrKrSLh3755WD7yMMcYyZJdTP/oo479gc3PzHM8zaNAgANwqlxU+hpg/ZBUACwCnM//ArhPReAPEwQrI5Wnv61ReCIEGfo+k9fbt2wMArK2t8zUuxoqxzwHsVrdDCDEWwFgAqF69ekHGxPKZrrkXgFLuVdSoUaO8hsMYY8WC/+JeALIfbHH06M8BvKts0JR7u3XrJr3+5ptvcPz4cQwdOjS/QmUsTwwxa0NtIqpGRK6ZC1ciFHGH7rzW+ZhBZcoAANasWYN9+/bld0iMFUn5MT4Nj01TdOiae4UQUu5ljDGWOzs8XwHIvkWCgFAqkzX3/vrrrwAAS0tLaVutWrXw+PFjVKlSJV/jZSy3eIhPpne/nfTTqbwQAj9VsQMANGnShAeSYUxLPD4NU5SX3MsYYyx3Zh68D0C76R/lZbLm3jp16uR/YIzlM0N0bWAsWzzgF2P5j8enYTnh3MsYY/lHm4oEzrvMmHGLBFbocFJlTC9WAbBGxvg0d4QQaw0dECtc1OXeDh06GCASxhgzfto8z+ZUhhsPssKMWyQwvVvyke6DdH0VGKiHSBgrvoiotqFjYAUrP3Lv2bNnkZ6enl8hMcZYkbfhUzcAunVt4OdeZoy4IoHpnXMV3WZbEELgYVKS9Joxxpju8pJ7ASA1NRVmZmYwM+NHBcYY01Yjh4yBE3Xp2qCYe9XtZ6ww4q4NTO/6rb6qU3khBC7U5i9PGWMsL/Kae7kCgTHGdNdy4VkAunVt0PTcy10bWGHGFQmMMcYYY4wxlo+0bZHwww8/qN3OWGHHFQms0OHkyRhjBY9zL2OM5R9tc2rJkiX1HAlj+sEVCUzv+rjqNi+5EAJ7oqP1EwxjjBUTuubezp07c+5ljLE8GtaiGgDtWiTIy2nKvdy1gRVmXJHA9O6HbvV0PmZeaIgeImGMseJD19z70Ucf4RtfHz1FwxhjxcOiAY0BqFYkeHl54eLFiyrlTUxMpOferl27YuHChejRowdGjx6NNWvW6D9gxnKJKxKY3o3eclOn8kII7HV00k8wjDFWTOiaewEgevQXeoiEMcaKj94rLwFQ7drQrFkzVK9WTaW8iYkJ9jo6YfDgwTh58iRmzJiBEiVKYMOGDbC3ty+QmBnLDa5IYHrnF/JW52NcLC0BcJ9dxhjLrdzk3iQfbpHAWH4RQgwSQjwUQsiEEG6GjocVjAdBsQC079oghICLpSVq1Kihz7AYy3fFpiJhwYIFcHFxQePGjeHq6gpPT0+4u7vD2dkZTZo0Qdu2beHn5wcAcHd3h5vbu3zv5eUFd3d3af3GjRvo0KEDnJ2dUa9ePXzxxRdISEhQup6/vz+EEFi5cqW0beLEidi8ebNe75MxxgoTQ+TekiVLwtXVVVq2bt1aIPfKGGNZPAAwAIBqe3Y9Kui8u3r1aqWc27BhQwgh4OvrWyD3W1hp+2WYvMJBJpPpMxzG8l2xmCT62rVrOHLkCG7fvg0LCwtEREQgJSUFALB9+3a4ublh3bp1mDp1Kg4fPgwACAsLw/Hjx9GjRw+lc4WGhmLQoEHYtWsXWrduDSLC/v37ERcXh1KlSimVrVSpElasWIFx48ahRIkSBXOzhZCtle73HpaWCgBcO8uYETNU7q1Vqxbu3LlTIPdYmOUm95pVrAj4PdJDNIwVP0TkCxRs60pD5N0JEyZgwoQJ0vrMmTPh6uqK+vXrF8AdFz6VrC0A6FaREJaWyhUJzOgYrEWCEGKKEIKEEBX0fa3g4GBUqFABFhYZf9gVKlRA1apVlcp06NABT58+ldanTp2K+fPnq5xr9erVGDlyJFq3bg0gI0kMHDgQlStXVilbsWJFdO7cGVu2bMnP2zE6hya01fkY92fPAGRUxjDGjJOhci/LkJvcW+dSgX5xyhjLJIQYK4TwEkJ4hYeH5/o8hs67Fy9exJ49e/DXX3/l+h6M3Y1ZHwDQrSLB/dkzrkhgRscgFQlCiGoAugB4VRDX69q1KwICAlC3bl189dVXuHDhgkqZ//77D40aNZLWW7duDQsLC5w/f16p3IMHD9CsWTOtrz19+nQsXboU6enpub8BI7fx8gudj5lgq/f6JcaYnhkq9z579kypme2lS5fydiNGKje5N3zlKj1EwljRJYQ4I4R4oGbpq8t5iGgdEbkRkVvFihVzHY8hn3mjo6MxatQobNmyBTY2Nrm+B2O3/PRjncq3atUKE2wrKHUpYcwYGKpFwnIAPwAokMlRrayscOvWLaxbtw4VK1bEkCFDpLEKhg8fDldXV1y5cgW///670nGzZ89WW0Orixo1aqBFixbYsWNHns5jzDZd8df5mAkVuCKBMWNnqNwr79ogX9q3b5+X2zBaucm9EatX538gjBVhRPQBETVUsxwyRDyGfOb98ssv8cknn6BtW91bQxUlK84+0al827ZtMaFCBfTp00dPETGmHwU+RoIQog+AICK6m1OTHyHEWABjAaB69ep5uq6pqSnc3d3h7u6ORo0aSd0N5P3F1OnUqRPmzJmD69evS9tcXFxw69Yt9O2rfUXzzJkzMXDgQHTo0CFP98AYY8bGkLmXMcaKI0Pk3S1btsDf3x/btm3Ln5tgjBV6emmRkEMzr1kAftTmPPnVzMvPzw9PnryrHbxz5w4cHR21OnbWrFn49ddfpfWJEydiy5Yt8PT0lLb9888/CAkJ0XiOevXqoUGDBjhy5EguomeMMeNk6NzLGGOGJIToL4QIBNAawFEhxEl9X9MQeff58+eYNWsWtm/fDjOzYjGOO2MMeqpI0NTMC8BzADUA3BVC+ANwAHBbCFFFH3HIvX37FiNHjkSDBg3QuHFj+Pj4YN68eVod27NnTyhWYlSuXBm7du3ClClT4OzsjPr16+PSpUuwsbGBl5cXvvjiC7XnmTVrFgIDA/PjdozOxpG6T5080P8FvvnmGz1EwxgrKIbKvVnHSPjzzz/z+9aMQm5yr9O+ff9n777Do6rSB45/3xRKCARCQg29SRHpRVEUBF1BsKAoilhRF1dsq2L77dorlhV1saKgwNpABGmiotJCkd4JHRJIgJCE1Pf3RyZDQtpMyGRmkvfzPPfJ3DPn3nlPJrzcOXPuOQCMGjWqtMMxpsJR1e9UNUpVK6tqXVW9zNOv6Y28+8orr5CUlMQ111xj89MAP9zXJ89+7hUtCpOTe43xJ6JaJtMUFPzi2Z0J3VT1SHF1u3XrptHR0Z4PypSaE0dS+OKpJfS4rwPdOxSy+kLCbni7I4xdC7VO95inrN9A1Q7tyyhSY9wjIitV1f1PaX7G8q5/stxryivLvcZX5eTdkc/3ZvepNM6NCiu4ouVe42eKyrteW/7RVBx3THL/P8OYYcM8EIkxxlQclnuNMabsXfnu724fY7nX+COv3sikqk29+frGGGOMMcYYY4xxj41IMMYYY4wxxhhjjMu8OkeCO0QkDtjt7TgcIoBi53XwYf4eP1gbfIW/t6Gk8TdR1ZIvJeMnLO+WOmuDb/D3Nvh7/GC5t0iWe0udtcH7/D1+qLhtKDTv+k1Hgi8RkWh/nuzH3+MHa4Ov8Pc2+Hv8FUl5eK+sDb7B39vg7/FD+WhDRVEe3itrg/f5e/xgbSiI3dpgjDHGGGOMMcYYl1lHgjHGGGOMMcYYY1xmHQklM9HbAZwlf48frA2+wt/b4O/xVyTl4b2yNvgGf2+Dv8cP5aMNFUV5eK+sDd7n7/GDtSEfmyPBGGOMMcYYY4wxLrMRCcYYY4wxxhhjjHGZdSQYY4wxxhhjjDHGZdaRUAwRiRGRdSKyRkSiHWXhIjJfRLY5ftbycoyXi8gWEdkuIo/nKv+Ho3yDiLxayLH52ufO8WVBRD4RkVgRWZ+rzKfeg6KISCMRWSQimxy/y7GOcn9qQxURWS4ifzna8G9Hud+0AUBEAkVktYjMcuz7VfwVia/n3vKedx2xWO71Msu9pqxZ7rVr3rPl77m3vORd8HzutY4E11yiqp1yrbv5OLBQVVsBCx37XiEigcAE4G9AO+BGEWknIpcAQ4GOqtoeeL2I05zZPtw83tM+Ay4/o8xn3gMXZAAPq2pboBcwRkTa4V9tSAX6qep5QCfgchHphX+1AWAssCnXvr/FX9H4ZO6tIHkXLPf6Asu9xhss93rPZ/h33gX/z73lJe+Cp3OvqtpWxAbEABFnlG0B6jse1we2eDG+3sDcXPvjHNt04NKStM9R7tLxZdjOpsB6X3wPStCWGcAAf20DEAKsAnr6UxuAKEfS7AfM8ve/o/K++XLurSh51xGT5V4f2Sz32lZG75flXu+/B+Um7zpi9tvc66951xGjx3OvjUgongLzRGSliIx2lNVV1YMAjp91vBYdNAT25trf5yhrDVwoIstE5FcR6Q4gIg1EZHau+gW1j8KO9yG+9B64TESaAp2BZfhZGxzDo9YAscB8VfW3NrwFPApk5Srzp/grGl/OvRU174LvvAdusdzrVW9hudefWO71vdzrK79/t/lr7i0HeRfKIPcGnc3BFcQFqnpAROoA80Vks7cDOoMUUKZkv7e1yB5S1B2YLiLNVfUAcEWuuvnap6q/FXG8rRdaQiISCnwDPKCqJ0QKeut8l6pmAp1EpCbwnYh08HJILhORwUCsqq4UkYu9HI5xjS/nXsu7fsRyr/dY7vVLlnst95YKf869/px3oexyr41IKIYjCaGqscB3QA/gsIjUB3D8jPVehOwDGuXajwIOOMq/1WzLye6Nijjz4ELah6vHe5EvvQfFEpFgspPpFFX91lHsV23IoarHgF/IvofPX9pwATBERGKAqUA/EZmM/8Rf4fh47q2oeRd85z1wieVer7Pc62cs9/pk7vWV37/Lykvu9dO8C2WUe60joQgiUk1Equc8BgYC64GZwChHtVFk3/vjLSuAViLSTEQqATeQHd/3ZN8Tg4i0BioBR3IfWET7cOV4L/Ol96BIkt0F+zGwSVXH53rKn9oQ6eiVRUSqApcCm/GTNqjqOFWNUtWmZP8b+VlVb8ZP4q9o/CD3VtS8C77zHhTLcq/3We71L5Z7fTb3+srv3yX+nnv9Pe9CGebegiZOsM05SUVz4C/HtgF40lFem+zJK7Y5foZ7Oc4rgK3AjlwxVgImk50kV5E9+yhAA2B2Ue0r6ngvte8r4CCQTnav8R2+9h4UE38fsoferQXWOLYr/KwNHYHVjjasB55xlPtNG3K15WJOTzrjd/FXhM0fcm95z7uOeCz3er8NlnttK8v3yHKvXfOWRhv8OveWp7zriNtjuVccJzXGGGOMMcYYY4wplt3aYIwxxhhjjDHGGJdZR4IxxhhjjDHGGGNcZh0JxhhjjDHGGGOMcVmQtwNwVUREhDZt2tTbYZgSOHzsFHI8ndoNqxEYVETfVWYaHN5ARmA9gurWL7sAjXHTypUrj6hqpLfj8DTLu/7L5bwLlnuN37Dca3xdSXIvddtDYKWyCdAYNxWVd/2mI6Fp06ZER0d7OwxTAh3/OZu7E6sw8vne1IioWnjFhN3wdke2/xBCS3uvjQ8Tkd3ejqEsWN71Xy7nXbDca/yG5V7j60qSexn7A9RqUjYBGuOmovKu3dpgPK5NvVC36ldu2cpDkRhjTMXgbt4Fy73GGHO2SpJ7jfFX1pFgPO7jUd3dqt/og/c9FIkxxlQM7uZdsNxrjDFnqyS51xh/ZR0JxuNenbvZrfqrHnqY77//3jPBGGNMBeBu3gX469FHmTJligeiMcaYiuGFH9YDkJqa6uVIjPE860gwHjdzzUG36tdY+xdXX321h6Ixxpjyz928C1Bt1SpuvvlmD0RjjDEVw5yNcQDWKWsqBI92JIhIIxFZJCKbRGSDiIx1lIeLyHwR2eb4WcuTcRhjjDHGGGNMWcjIyPB2CMZ4nKdHJGQAD6tqW6AXMEZE2gGPAwtVtRWw0LFvjDHGGGOMMX5NVb0dgjEe59GOBFU9qKqrHI8TgU1AQ2AoMMlRbRJwlSfjMN71/Zjz3ao/PKZCrO5kjDEe427eBcu9xhhzti7N/thjHQmmQiizORJEpCnQGVgG1FXVg5Dd2QDUKeSY0SISLSLRcXFxZRWqKWVbDiW6Vb9V5coeisQYYyoGd/MuWO41xpizdUKyl3+0jgRTEZRJR4KIhALfAA+o6glXj1PViaraTVW7RUZGei5A41GPfbPOrfrP168HQHx8vCfCMcaYcs/dvAunc68xxpiSWU5rABTrSDDln8c7EkQkmOxOhCmq+q2j+LCI1Hc8Xx+I9XQcxv9ER0d7OwRjjKlwkpKSvB2CMcb4NRuQYCoCT6/aIMDHwCZVHZ/rqZnAKMfjUcAMT8Zh/FNWVpa3QzDG79hqOeZs3XXXXd4OwRi/Y7nX5GE9CaYC8PSIhAuAkUA/EVnj2K4AXgYGiMg2YIBj35RT/7ysjVv134zLHqBy4sQJMjMzPRGSMeWZrZZj3M67cDr3btq0qbTDMaYisNxr6BSQPWmtzZFgKgJPr9rwu6qKqnZU1U6ObbaqHlXV/qrayvHTboYvx4Z2auBW/R9PZE8SNnz4cEaPHu2JkIwpt2y1HAPu5104nXvtAtgY91nuNQDNAo4ClkdNxVBmqzaYiqvPK4vcqr+gRQvn408++aS0wzGmwrDVcioud/MunM69dgFszNmx3FtxfZfRBbA8aioG60gwxphyyFbLMSVl89MYU3KWew3AkiVLvB2CMR5nHQnGGFPO2Go55mzYN2nGlIzlXpNj6dKl3g7BGI+zjgTjcRe0qO1W/SVJyR6KxJjyz1bLMeB+3oXTudc6Eoxxn+VeA5Cye43bx2RmZTFx4kTS0tJKPyBjPMg6EozHvTKso1v1nz500EORGFMh2Go5xu28C6dzr3UkGFMilnsN8XPecfuYr7/+mrvvvpvXX3/dAxEZ4zlB3g7AlH+Pfb2WDm7Uf65efW45fiBfeVpaGj/++CNXXXUV2R3/xpgzqervQGH/QPqXZSzGe9zNu3A691pHgjHus9xrAML/dr/bx8THZy9ed/z48dIOxxiPshEJxuP+2HHUrfq9q4UUWP7vf/+ba665hvnz55dGWMYYU265m3fhdO61jgRjjCmZqk06uX1MRkYGAEFB9v2u8S/WkWD8xu7duwGIjbV5iowxxlOsI8EYY8pORkY6AMHBwV6OxBj3WEeC8QuLFy/mxx9/BODUqVNejsYYY8ov60gwxpiyM3/+AsA6Eoz/sY4E43G/P3aJW/Uv3bEjX9lFF13EsWPHALjrrrs4dOhQaYRmjDHlkrt5F07n3qysrNIOxxhjKoT9H9zu9jEbN24E4KmnnmLPnj2lHZIxHmMdCcbj7n/jC7fqD6pRPc/+tddem69O/fr12bVr11nFZYwx5dWMNfknrC1OTu61EQnGGFMy1dpddFbHf/zxx87HP//8M+np6WcbkjEeYx0JxuNWZUQB8Ouvv7pU/8HIOnn2v/322wLr7du37+wCM8aYcuq1uVvcPiYn91pHgjHGlEzNi249q+Nz8u/SpUvp378/Tz75ZClEZYxnWEeCKTMrV60q1fOlpaU5b3cwxhhTOqwjwRhjvCtnYvFNmzZ5ORJjCmfrjJiyk+vi9J///CeVKlXihRdeKPHpLr30Usdp7aLXGGNKi82RYIwx3hUQkP1dr+Vj48tsRILxqCVLlnB0ztsA/Oc//0FE+Pbbb3n99dd58cUXCzzmqYM2kaIxxpyNV6491+W6OxyTLObkXuucNcaYksm55s0tJiaG/fv3u3R8Tv4NDAwErCPB+DbrSDAedfvtt5N+ZHeestyTJ65evTrfMdtSUz0elzHGlGdt6lUvvpLDbbdnzzKek3utI8EYY0rmzGtegGbNmhEVFeXWeUQEsI4E49usI8F4lIhQb+T4Qp9/880385VNa9rkrF5TVUlISDircxhjjD+7asKfLtfNzMwATude60gwxpiSKeqa1xU5+Tfn1gbLx8aXWUeC8SpVJSsrq1R7XN944w3Cw8PZu3dvqZ3TGGPKqzOvU+3C1Rhjzl737t156623Cnxu4cKFNG3WrNBjbY4E4w+sI8F4VM7QrKJcdNFFBAYGklVKF6/ff/89ALt27SqV8xljTHmhqqxbt67IOnbhaowxZy86OpoHH3ywwOfee++9AstnzJhBw4YNueeeewDLx8a3lbgjQUSqiUhgaQZjyh8RIWnTr4U+n5GRwR9//AFAeno6ALNOnDir1wwODs5zPmOMqWiGdKpfYPl7771Hx44d+fXX03k5ZwRCTu61EQnGGFMyRV3zumL9+vUcOHDAOQnuokWLOHTIJiE3vsnljgQRCRCRESLyo4jEApuBgyKyQUReE5FWnguzYKrKI488wtq1a8v6pY0bjv06qdDnpk6d6nyc88H/rbg4t86fkJBAu3btnBfGOR0JGRnZ9/2ePHmSF198kbS0tAKPV1U++OAD4uPj3XpdY4zxVY9edg4AKadS8pRHR0cDp1dqgNPfeOXkXutIMMaYkinqmjcmJsb52JURuzl69+59NiEZ4zHujEhYBLQAxgH1VLWRqtYBLgSWAi+LyM0eiLFAIsKdd97JG2+8kWcVgOLs2LGDOXPmeDAyz0tJSSm+ko8QESKHPeNS3Q4dOgDwnpsz24aHh7Np0yaGDRvG0qVL2bBhAwCXX345x48f5/333+fJJ5+kcuXK/Pe//3Uel5CQQFJSEj///DP33nsvjz/+eJGvExcXx5EjR9yKzRhjvOGOSSsAGHXLqAKfL+giNif3FtSREBsby4oVK7jttttITk4uxUiNMab8KOqa95VXXnE+dqcjIXcHhDG+xJ2OhEtV9TlVXauqzht2VDVeVb9R1WuBaaUfYn4bN24E4JNPPgEgJCTE+VxiYmKBx8TExDBgwABatmzJFVdcwcMPP8yxY8dITEzk8ccf59ChQ8yfP5/U1FS2bt3KggUL2LlzJ1FRUaxcuZLo6Gh+++03l+PLfSGWlpZGXFwcu3fvLvabnjPXmU1JSUFVnd+mL1++nJCQkBJ3hkyZMoWrr766TO+5qhTR1K36rStXLtHrHDlyhN69e3PgwAFn2c8//5znfuDnn3+eb7/9lvnz5xMeHk7btm05fPgwAFu2bGHcuHFkZGRw6NAh3nnnHerWrcsPP/wAQJ06dYiMjATgyy+/pHv37nb7hDHGJ205dBKAFStW5Ckv6P+gnLKc3FvQ/w9169alR48efPbZZ0yZMqW0wzXGmHKhqGvezMzMsz7/X3/9VegIW2PKmssdCaqaDiAi14lIdcfjp0XkWxHpkruOK0TkchHZIiLbRaTor4JzWbNmDe3bt89TVrVqVVatWsU555xDjRo1+P333/n++++ZN28eDz30ELfddhtjxoxhwYIFzmPGjx9PrVq1qFGjBq+88gr169dn4MCBVKlShTZt2jBgwABee+019u/fT7du3ejevTt9+/bls88+49ixY3lef9y4cUyaNIkjR45w//330759e2rVquV8/q677qJOnTo0bdqUv/3tb6SlpTF16lRCQkIYM2YMAPv27ePXX38lKiqKoUOHIiIMHz6ckJAQhg0bRuXKlXnttdf46quvALjiiis4duwYaWlpzJ8/H8heraBq1aosXLiQuLi4PInm8OHD9OrVi5tvvpnvv/+erVu38sgjj/DKK69w8uTJPO15++23CQkJKZXhrbk/1HvDNddcwxdffOHc37dvH9deey0DBw4EYO/evaxcuRKA3377jZdffpnIyEjq16/P2LFjiY2NZciQIfTr1895jgsuuICbbrqJ6Oho9u3b5/w9rVq1ig0bNrB+/foiR438+eefbN68uUSdOenp6UV+G6iqzJ8/v8D3LisrixkzZhT5ugcPHuS7775zOy5jjO9q165dvrLc34YVluuPHz9eYGep3fpgjDHuW7t2Lf/73/945plnOHjwoNvH7927l06dOnH//fd7IDpjSkBV3dqAtY6ffYDFwFBgmZvnCAR2AM2BSsBfQLtijtEBAwYo4FfbzTffXGydGjVqnPXrtG/fvsDyDz74QNesWaOPP/54ocdWrVpV33vvPf3hhx/06NGj+Z779NNP9eDBgzp58mRdunSptm3bVrt27aojR47UxMREnTBhgm7atEkvueQSHTBggC5atEjPP/98Z9vb3TtZ3717oYaH1i2yDU3CRPX/auiSjk29/r65s4WGhuoHH3yQp+y8887TZcuW6VtvvaVLly7VBQsW6COPPKL//e9/89S7//77NS4uTh999FFt0KCB3n///bpo0SL94YcfFNBNmzZpUlKSpqWl6RdffKG9evVSQBMTE3Xr1q2amZmpx48f1127dul//vMf53nvuusuTUhI0ISEBE1LS9PDhw/nibFLly7atWtXjY+P199//10feeQR7datm9apU0cB3bdvn+7cuVM//vhjPXz4sM6ePVsnTZqkbdq00ZSUFM0xb948PXTokKqqnjp1SmNiYvTgwYN68uRJPXDggJ46dUozMzP15MmTmltKSoqmpaXlKcvKytLjx4/rpk2b9OKLL9Yvv/xSs7KyNDU1VT0tLS1NDx48qDNmzNDU1FTNysrSmJgYzcrKyhenqioQrW7mTn/cunbtWvJfqvGqi/81P0/eXbNmjaqq3nLLLQrop59+6qzbrWVkntxbu3ZtVVUFdPjw4c7HOdv7779f5u0xRtVyr/Fthw4dcvmaN/d1b5MwKbauqurq1asV0I4dO3q5paYiKSrvup3cgNWOny8BI3KXuXGO3sDcXPvjgHHFHOP1D4y2lWwLD63rVkeCKwnVNt/aWrdu7XLdtm3bKqCBgYHavHlzl45p0aKFnnfeeQU+V61atXxljRs31mrVqmmDBg20QYMG2qZNG+dzXbt21ZYtW5a4rbfeeqtiF7PGx8XtP5Yn71auXFlV1dnB+9lnnznrdm0RkSf3hoeHq6o6/+ZzPwb0vffeK/sGGaNFX9CWp81yr3/q3r27y9e84N5172uvvaZff/21QvaXVTnS09N1165dXmuzKf+KyrtBuG+/iPwXuBR4RUQq4/4ykg2Bvbn29wE9z6wkIqOB0SWI0fiQ6t2GulX/llrhPHf8qIeiMZ6wdetWl+tu2rQJyL5XcOfOnS4dk3uG+TMlJSXlK9uzZ0+hz+XcylJSn3322Vkdb0xZ+OSPGKrl2j/zntq8tzZk/8yde4u6BUpzDjDGGOO0Z88et695XfXPf/6zwPLHHnuM8ePHc+DAAerXL3jZX2M8xeWOBBHpTfbqDNcDlwOvq+oxEakPFPzXXcTpCijLd2WiqhOBiY7XtysXH9WqVSu2bdtW6PM1ug2FgufALNAt4bV4LqbidiSEh4fnWYrymmuuIS4ujj/++MN5cd+/f38GDBhQ5EoTvXv3ZuTIkfz9738vcSxhYWFUq1aN5ORk59wgVapU4dlnn+XJJ58kPT2dUaNGcc011zB06FAiIiLo3r07devWZdGiRWRlZXHOOecwePBgEhIS+Ne//sWbb77Jt99+y3nnncf111/P8uXL+f3332nbti3Lly8nMjKS+fPnc/ToUS655BIaNGjALbfcws6dO1myZAkhISH89ttvtGvXjrvuuouYmBiysrL44osv6NWrFw0bNiQiIoLg4GASEhKoXr06wcHBnDx5ElWlWrVqNGvWjD/++INKlSoRExPDueeey+233+78/Xft2pUmTZowffp0VJXbb7+dv/76iz179vD2229z5ZVXlvh3akxZmLx8P3dTxbmf8+E/52dBcyTkzr1FTQqWnp7OypUr6dq1a6nHbYwx/iojI8Pta96zsXnzZr799lsge2Ux60gwZa6woQpnbsAHwCpgKnAr2UtAlmjIFj58a8Po0aOLfL5Pnz559kVEBw0apL/88oteddVV2rdvX+dzvXr10m+//dbl137sscecw74L284///w8++Hh4dqsWbOcoSf5toYNG+rChQvzlYeHhzsfp6am6meffaaAxsTE6KxZs/K0c/v27ZqamqonTpxQVdWMjAzdvXu3xsTE6IoVKzQzM1O/+eYb3bp1q/7111+alJSka9eu1RdffFEBPfeRH926tWFbl5IPO/fGNmzYMH3wwQf1hRdeyFP++eef67JlyxTQG264Qfv166eXXnqpzpw50zkXAaCLFi3Sw4cP67p16zQzMzPPe3mmrKysPPtHjhzR559/Xo8fP65r1qwp9LiCHDt2TE+dOqXr16/X1q1b66WXXqoZGRm6Y8eOAuunp6cXOF9ARYQNrzU+rri8+8UXXzjrdmoani/3Vq1a1fl4xowZeY7Nee7vf/+7Xnnllaqq+uWXX+rSpUu91VxTQVjuNb4sLCzM5Wve3Ne97t7S26lTJ83MzMxTtmrVKlXNzsUTJ0708m/ClCdF5V23kxtwDvAg8BOwBHgRuAgIdOMcQcBOoBmnJ1tsX9QxHTt21C+++KLAf1D33nuv7t+/X88991z9888/nQ3PzMzUJ598UufNm+es+8knn+Q5dvXq1Xr48GHnBHLp6elF/uPNysrSqVOn6sCBA3XWrFnOD9dn2rRpk/Px559/7jx+69atunv3buf+kCFD8pxbVXXfvn15XnPevHl677336rZt2zQjI8NZvm7dOs3IyNCMjAxVVb366qudH2zP/EA5efJkjYmJ0alTpyqgzZo1U8iewDLHmR9SFyxYoI8//nhRf1vFatasmc91JIwbN04nTZqkF154oUv1H3zwQb3++uvzJewWLVpoVFRUnvauWbNGv/76a922bZuzbOnSpQVOGBgdHa1PPPFEgb+3OXPm6Pr16936XWdlZekLL7yQ57XdPd64xi5mja8rLu9edNFFzn/z5zWpdVa5V1Wdjw8dOqTJycnebLopxyp67n3ttdcUKJNJiMuLhIQEPXXqVJm8Frj+5Vnu696SdCScOTl6QXlZVbVOnTrat2/fMmm/KZ+KyrtnleiAqsAVwH/cTe6O47aSvXrDk8XVz0mqzz//vALat29fXbZsmbMHrjgdO3ZUwPkNcc4EbYcPH85X9/3339dJkybpmjVrND4+Ps9s+CX14Ycf6rp165z7f/31l7PzYvny5Tp+/Pg89ZcvX66HDh3StWvX5jtXenq6s/Mgt9wfBHfv3l3gB8qkpCQNDQ3Vb775RuPj4z3+n9HatWu1brMebnUkXFqncok7CVS10OduuukmhdOTjCUkJOhPP/3kXAkBTq9+Ua1aNf3jjz/0559/VtXsTqlTp07pOeecox9++KGqZq9SYBfMFVNFv5g1vs+VvHvPPfeoqmrHxjXPKvdmZWXl2e/du7eXW2/Kq4qae+Pj43XBggUaERGhgO7cudPl31liYqJztGNiYmKx9Y8dO6ZZWVln/eXCq6++qsOGDXPuZ2Zm5jvnrFmznKNXP/7447N6vdz279+vr7zyijMnXXrppUXW37hxY6FfDLpq/PjxCrh8zXs2HQmubC+99JK++eabzv3bbrtN77nnHk1JSdFp06ZpbGysx75AKuy8ixcvtpGtfshjHQlluZ3tBW18fLwuX75cVVW3b9+u6enpunfvXpeP37t3r+7evfusYqiINm7cWGYdCaNGjVJVde7v379f//vf/2q7du30oosu0muuuUYBnT59er44MzIyNDk5WU+cOGHvsylWRb2YNf7D1byrevYdCYmJiQWe15jS5q+5l+y5xbYA24HHi6vfoEEDnTNnjqqe/oCae+vbt68eOHBAo6Oj9YsvvnB+8I+Li9PnnntO9+3bp7t27co3ChfQl19+WefMmaPHjh3TN954Q5988kl95ZVX9NVXX81TLyAgQD///HOdNGlSge/FsmXLND4+XlVVv/rqK/3xxx91z549qqq6a9cu53mWLl2q9913nzZq1EibN2/uPD73CNvc27p16/Tzzz/XI0eOqKrqn3/+qZ988kme146NjdXdu3frZZddpl26dHF+MZfz5VhhuS4jI6OwJZ21atWqOmHCBE1PT3eWZ2VlaUJCQr76BXW0REZG+lRHQmHbVVddlWd/4sSJmpmZqatXr9affvpJIXsk9JIlS/Srr75SQC+77DIdMWKEXnjhhfrvf/9bmzZtqocPH9Zx48bp8ePH8/we/vzzT4XsjuqcDizV7C9QAX344Yf1888/L7AzLDk5WRcsWOD83c6ZM0djYmI0JSVFk5KS8tU3ZaOovCvZz7tORLoBTwJNyDVZo6p2dOtEburWrZtGR0d78iWMB2zbto1rJ27j7sQqPDNlBPEnDxdat0mYEPNAdbb/UIdWq7a79ToXXnghv/32G3B6ErGcv+20tDQCAgJYsmQJ/fr1Y//+/dSpU6eELTIGRGSlqnbzdhyeZnnXf3X852yX8u4777zDG0+PLXHuheyVWNq2bZunzN1rC2Nc4Y+5V0QCyR6BO4DsVcpWADeq6sYijvHJf0CdO3dm9erV9OzZk2XLlpXoHLVr1+boUfcn1K5WrVqBKzEBtGzZku3bs3NX06ZNiYmJKfZ8b7/9NnPmzCErK4t58+Y5yxs3bsyNN95IRkYGq1atYtGiRc7zhoSEcMUVV/Dll19y4MABAC666CLn9SfAuY/86FLuhdPXvU3fSmT3cZ98y102evRoYmNj+f777wt8vkaNGpw4cSJPWUBAgHMS8SuvvJJff/3VWefxxx/n5ZdfzlOvdevW9OrVi+DgYLZu3crixYsJDQ2lWbNmdOvWjQEDBpCcnMzs2bP59ddf+fvf/87KlSv5888/6du3LzNmzCgwthEjRtCpUyeGDx/OddddR8uWLdmzZw/PPvssX3/9NdWqVeOvv/5i3rx5TJgwgfr16zNjxgwmTZrEhAkTaN26NTVq1KBKlSosX76cc889l5EjRzJ48GDuuOMO3n//ffr16+f8G921axdjxoxh1apVrFixgiVLljB27FguueQSli5dyt69ezl16hSTJk3i+uuvp127dqSnp/P777+TlJREeno6t99+O4mJibRu3Zpjx47Rrl07tm/fTkBAAIcOHeL888/njz/+oG/fvvz+++9EREQQGhpKZmYmNWrU4OjRo6SlpaGqhISEULt2bbZu3UpWVhaZmZlkZmYSGhpK27ZtqVevXqF5tyQdCVvIXqVhHeBcH0pVd7t1IjfZBa1/2rVrF0Pf2+TRjoTAwEBSU1MJDAwE8nckGFPa/PFitiQs7/onVeW8R+e4fTFb0o6Eiy++mF9++SVP2UsvvcT1119P8+bNAVi1ahXt2rWjSpXTK0lkZmYSHx9PZGSks+zjjz+me/fudOzo0e8mjJ/yx9zrWPXsX6p6mWN/HICqvlTEMXYB46cqakeCKdcKzbsBJThZnKrOVNVdqro7ZzvLAE05FRRU9AqjkyZNcj6uWrVqiV5jwoQJzk4EY4xvUdUilxI0pa+sf99ndiIAjBs3jj59+gCwd+9eunbtyg033MDPP//Mjh07UFWeeOIJ6tSpg4gwefJkVJU777yT8847j7Zt2/LYY485v60yxo81BPbm2t/nKMtDREaLSLSIWO+tMSXgy8tftm/fvtg6gwcPduucDRs2pHHjxkD2l6q5X6NSpUp0796dQYMGERER4dZ5q1WrRlRUFADDhg0rsm5JOhL+T0Q+EpEbReSanK0E5zEVQGBgICei8w4l+vrrr52Pb7nlFnr37g3Ap598AsDn8Qkun3/hwoWMHj26FCI1pmIQkctFZIuIbBeRx4uqu2fPHrZu3UpSUhJbt25l3bp1ACxfvpzY2FgOHTpEWlpanmPi4uI4fPj0tzAvv/wyQUFBnDx5stDXiYuLy/eB8eDBgyxevJiFCxc6y1wZZbR//35OnTrl3P/jjz/YsmULsbGxABw+fNg5rDYhIYHHHnuMqVOncsMNN+Q715EjR876g6yqkp6eXmy933//naNHjxbaRlXl999/58svvyzyPKdOnWL8+PH58q4r3Mm9rjh48CD/+9//GDNmDAAzZsygf//+tGzZkvDwcF599VVn3ccee4z169c79zdv3syrr77KtGnT2Lp1K7Gxsfzyyy88/vjj/Pbbb8735fPPP+eNN94AIDk5mddff73Av7Xk5GT27NnjUtybNm1i797sz3379u1j5syZJfsFuGHdunWFDts2fk8KKMv3D11VJ6pqt9zf/D377LPFnvz8888nKyuLAQMGEBoayldffUXfvn3z1HniiSecj6tWrUr37t259NJLueeeewo8Z1hYGACvvfYaDRo0AOC3334jPj6e999/nxdffJEZM2aQkpKS57g33niDn3/+2Tky9MzXzt2m5s2b8/bbbxfZtv/+97+8+eabADRr1sxZXqdOHbp160ZwcDAAt912GwCtWrXivffeK/Bcc+bMoXr16rRv354FCxawfft2du3a5TwWsq9Jf/jhB+f938uXL2f16tUcOHCAH374gTFjxvDJJ5/w+OOPM2/ePLZs2UJqairx8fHOc5Qk95alSpUq5dl/8MEHefnll5k/fz7x8fEkJSXRr1+/PPUqV65Mv379+Mc//gFk/7/eu3dvQkNDgewv9F566SUWLVrEvHnz6NixY578/sYbb7BmzRr+/e9/A9CmTRu++eYbvvzySxYtWsQ333zDpk2bWLVqFU899RTffPMNv/32G3379uXee+/ljjvuIC4ujo8++oiUlBQSExNZvHix8/zdu3fn8OHDHDhwAFXl+PHjHDhwgNTUVDIyMkhKSiIrK4u0tDSOHTvGa6+9xvr165k9ezbTpk1j7ty5pKSkkJWVRUJCAqdOnco3F0BmZibHjx8vsDw1NbXYeVLWr1+frywrK4s5c+YQHx/PqVOn+OGHH8jMzCQrK4tdu3YVeJ64uDiSk5NRVfbt28fu3btRVTIyMvK8RmpqKsuXL2fWrFnExcW5NafLyZMn2bt3L6rK//73v6L/oNw5seMCZzIQDUwCPnVsn7h7Hnc3m/TLPx06dEjDQ+s6J56ZPn16nrVvVVWPHDmiM2bMUI2PcXvSmdwTueTIfW5jPAH/nfArkOyVcppzeunddkXUz/dvLvdM2DlbWFiYHj58OM/yuWFhYfnqDRw4UG+77TbnfkREhD7yyCOF1s+9DRgwQAHt37+/TpkyRVevXq3Lly/XadOmaVZWlt5zzz3qGA7s3C644II8+zmTQAH6xx9/6M0335zn+Xnz5umzzz6rDz74oD7zzDPO8jvvvFM///xz7d69uwL66quv6t69e3Xjxo1av3595wRWCxYs0FtuuUU/+OAD/e2333TixInaqlUrbdq0qX7//ffas2dP/dvf/qaxsbF64MAB3bt3r27atEl//vln52u1a9dOn3rqKf36669169atmpmZqUeOHMkT57Rp03TIkCE6ZMgQnTBhgqqqrlixQqOjo3XQoEEK5Mm7xeVRb0z4dbZblSpV9I477nDuR0ZG6iWXXOJ830eMGKGLFy/WMWPG5Jlc7PDhwzp06FDdunWrTp06VVu2bKlffPGFHj16VAcMGJDnvVA9PYHaxx9/rPPmzdOMjAxdsWKFfvPNN/rWW2/pjBkz9LrrrtP33ntPX3jhBVXNPzt9YmKiHjhwQBMSEvTEiRM6evRoHTBggDZo0EC7dOmiTz/9tALatm1bPXDggHOpZ9XsSd2OHz+umzZtcv7dHDt2LN8EZzmv98ADD2ifPn0KzFtZWVl66NChPGUpKSkFzrCeu+zMVaI2b96sy5cvd65gVJb8MfcCvYG5ufbHAeOKOqZFixa6aNEiVc2e1HDq1Kk6f/5859/mt99+q6rZ/+6PHj2qqtl/dznvVe7rrCVLlqhq9mpeOZMj5paVleU8x4cffuisnyMpKcn5fEHS09N19erV+ttvvznLrrvuOoXsldJUVVetWqVPP/208/mDBw86J0b866+/dO7cuTp+/Hh95ZVXnHk6599T7tc5ceKEfvPNN84JE3NWzkpKStIrrrhCN2zYoKqaJ2fWqlWrwGvF3O379NNPNSYmpsSrGOSeONJbuXf48OH5ypo2bZpnf8OGDbpu3Trt0qWLjhgxosjVP5KSkhTQ1q1b5ymPiYlx/j6zsrKKXL0sOTlZ//rrrxL9Tl1x4MCBs15twxSvqLxbkoS4zt1jSmOzjgT/FBsbq+3unexMqseOHVNVzXOh5uToSFjSsanLibMggFauXNnTTTMVmD9ezGoJLmi9/WHRtpJvufNucXVzLmbdyb0VYatcueRLEZe3LWfJ7IEDB+Yp79OnjwLarFkzHThwoIaEhDh/d127ds1Tt3bt2nn227Vr51YMd911l+KHuZfsicl3As043YHbvqhjCrvmXb58uZ46darA584UEhKi//rXv1yqW9pOnDhR4ApZZWn9+vUeX+I8t7i4uOyVwkqQe0vakRAVFaWAjhkzRlVVP//8c+dzzz77rB45ckQ3b96sBw4c0E8//dQZq6sdJpMnT7aVzEyRebfoG9gLtlRE2mkRs80akyMwMJDAarUg0fVjIoqZV6E4J06cICCgJHftGFPuFXSvbs/cFURkNGD3C/k5d/MunH3uLW9SU1O9HYLPyLntIvfs9pB9Sw5kT6y8a9cuZ3lqaiorV67MU/fMmfo3bnTvMvLDDz90q76vUNUMEbkPmEv2qLBPVHVDSc7VvXt3l+t681aZ6tWrc91113nt9cG1e9JLU0REBMHBwSXKvSXx0ksvUatWLe655x7nLYYjR46kU6dODBw4kLvuuovatWtTu3ZtAG699VbnsblvPSnKTTfdVOpxm/KlJFcNfYBbRWQnkEr2vV+qHl7+0fin3PdY/fPRfzrvu/Ok6tWre/w1jPFTxd6rq6oTgYngPzOH/+Mf/+A///lPmb9urVq1SEhIKNGx4eHhee6rLcjgwYPp2bMnTz/9dIlewxStuPegcePGeeZVGDVqVJ4Jgs80ZswYvv76aw4fPsxtt91Gs2bN+PHHH0lLSyMuLo59+/YVG1NgYCAiQkZGBlFRUYwcOZKZM2fSsGHDPB/ie/ToQVhYGNdeey3r1q1zxvrRRx9xzjnnkJmZyfTp051zRtx666088cQTNGjQgF27dnH99dcTFhbGV199xQ033MDJkyepVq0aiYmJhIeHk5CQwLnnnsurr75Khw4dmDFjBi+88AITJkxg6NChPPfccwwaNIhatWoxZswYFi9ezI033sjs2bM5cOAAHTp0oFKlSjRv3pyHHnqIu+66iy5dutC1a1cGDRpEWFgYI0eOZO3atdxzzz0EBwdz2223kZycTEBAADExMZx33nlcc801TJs2jUsvvZQtW7bw5JNPuvju+hZVnQ3M9nYcxvvO5v8NgAYNGnDgwAFq167N8OHDmTVrFs8884zz+XPPPZeDBw+WRqjGFK+woQqFbUCTgjZ3z+PuZrc2+K+BT/+g7969UI/Hnb6PCtBHH300b0XHrQ0/tm9U7HCu2bNn65YtW8q4JcZkww+H12aHXbJbGypXrqwNGjRQwDlc+cEHH9QjR47onDlznL+XrKwsjY6OzjMPwieffKJ33nmnAhodHZ3v3/I999zjfDxv3jydMGGCbtmyRQG9+OKLtVmzZs7ng4KCdMmSJZqQkJDvPYmNjdVly5ZpbGysZmVl6QsvvKDz5s3TN954Q2+55Ra98847NTU1VX/88UeF7Hvev/jiC73vvvv0lltu0eXLl+vu3bt10KBBunPnTh0wYIDee++9Cuhrr73mvLd96NChGh8fX+B9n5s2bdLBgwfrG2+8oadOndLFixcroHfccYdOnDhRu3btqps3b8533IoVK5xt/N///qf333+/Xn/99XnqpKSkKKCjRo1SVdX9+/frHXfcocnJyXrq1CnNysrSxYsXa1ZWll5wwQXa5tYJbg+vdSX3uru98847efbr1KlT4nO99dZbmpCQoG3btlVAW7RooUuXLlVA69Y93c5nnnlGt2/f7rz/F9Arr7zSOUfAL7/8orNnz9bExEQNCwvTjz/+WCdMmKCnTp3SJ5980nkLXo7ExERNT09X1ex7oXPfb/3WW2/pV199pWPGjHFpGHVmZqYeP35cv/rqK12+fLn+85//1M2bN2tSUlKef0cF2bx5s2ZmZuqiRYsKrVPSe7zdkZmZqVOmTMkTc1nx19zr7mbXvP7p008/LTb31qpVq8S3NixdulRvv/12BbwyR4mpmIrKuyW5EF0HTAEeA/4GRAFPunsedzdLqv7reFxyvo6EArkx2eLy5cvLJnhjCuCvF7O4ea9uq1at9N1339UdO3aoqurq1av11KlTunDhwmLv073vvvs0KChIVVVTU1N17969qpp932rOhGDJycmFToJ15qRgycnJevLkySJf01Xbt293ue6xY8fK5MPZs88+q927dy+yzt69e52TjBVlzpw5PjPZ4sGDB3X69On62GOP6bXXXqu7d+/WkydP6s6dOzU1NdVZ78knn9R169bpjBkznGX16tXT/v376/bt2/XIkSPO9iUlJWlKSopz/48//tCYmBjndqZTp07lmzDQ+Cd/zb3ubnbN658+/fTTYnNvzZo1S5x7N27c6Oyo/+ijj7zdXFNBFJV3S3JrQ1+go2O7AfgK2Ai8UIJzmQrg1bmbcWdl1wciI3nweGyRdWwOBGPcp27eq1ujRg3n0n0AnTp1AqBfv37FvtZ//vMf5+0GlSpVcq5JnPu+1apVqxZ6fK1atfLsF1XXXS1atHC5blncjgXw9NNPF3sLQ87vsDhBQUHU7DvK7Rhcyb3u2LNnD/Xq1eO6667Ld790zlJuX3/9NQ0bNqRXr14AtG7dGsj+W1u1ahWQ/37ekJCQPPvnn39+kXFUrly55I0wxhg3FJd7sz+XlUxgYKDzeFfnOTDGk9z+NKaq8ar6i6q+o6qjgO7AttIPzZQXM9e4d6/W4Bo18pW1a9fOeaEJ1pFgTEmp6mxVba2qLVTVOoDLoW7dulGtbV+X6uZ8cIeCc29x6tcvuJv4X//6F40aNSr2+GuvvTZPbq9UqRJLly5l4cKFiIhdLBtj/IaIFJl7X3zxxbPqSKhfvz433ngjABdccEGJz2NMaXH705iItMq9r6rbyB6dYIxHJCYmsmrVKpYsWeK8aLWLS2OMKVjNmjVdqte1a1f+/PPPEr3G5MmT2bdvX6GjU84777wSnRegZ8+ehIeHl/h4Y4zxRVdeeSVZWVklOlZVqV69OgMHDkRVadOmTSlHZ4z7SvK17kQR2SMiS0TkvyIyCVgvIiHFHmlMCYSGhuYbmmojEowx5uwEBASUeNh/VFQUDRs25KOPPuLDDz90jiq47LLLaN68OX37ujYiwhhjyovivuTKua/cXU2aNClpSMZ4VElubbhEVRsDw4Efge1ACPCXiGwu5fhMOfD9mKLvXz3T8JjdxdaxjgRjjCmcK3k3MDAwz9wTruTeHDkdBVWqVOHOO+9k0KBBAHTu3JkdO3bkm+PCGGPKu6ysLA598VCRdUrSkXDvvfeWNCRjPMrlT2NyRjebqu5R1Zmq+pyqXquqrYAepR6h8XtbDiW6Vb9VEd+Q5SRg60gwxpjCuZJ3AwMDCQwMZMGC+UDRubc4SUlJAFSrVq3E5zDGGH+WlZVFcEThowdKOiKhVatWxVcyxgvc+TS2SET+ISKNcxeKSCUR6ee4xeGa0g3PlAePfbPOrfrP16/nfFzYjOk2R4IxxhQud97dtq3g+ZBzOmSDgoKBvLnXXZmZmUDZrXJhjDG+JjMzk9p/G+vcP3MOmtwdCVOnTnXpnAcOHODqq68uvSCNKUXudCRcDmQCX4nIARHZKCK7yF6x4UbgTVX9zAMxmgps+PDhefZzJqmxEQnGGOOali1bFliek0dLo2N23Lhx/P3vf+eOO+4463MZY4w/ysjIyLPfs2fPfHV69MgevH3VVVcVea6XXnqJxMRE6tevb1+eGZ8V5GpFVT0FvAe8JyLBQASQoqrHPBSbMfnEx8cDULt2bS9HYowx/i0wMBAonY6EWrVqMWHChLM+jzHG+KuckVk5zsytqsrMmTPZvHlzsRPd9u7dm9DQ0FKP0ZjSVKKvdVU1XVUPWieCccU/L3NviZo342Kdj8+8lyxnWTNbGswYYwp3Zt4t6N7cnIvUAMfFbu7cm/u4c88910NRGmNM+ZGZmcmx3z5z7hfUSRsWFlbgSIXcduzYYSvfGL9g48ONxw3t1MCt+j+eKHySsD///JNp06bZrQ3GGFOE4vLu008/zYcffpi947jYzZ17X3zxRV599VUg/7dsxhhj8svMzCRp42+FPu/qRIvNmzcvrZCM8SiXb20wpqT6vLKIu6nicv0FLVrQatX2Ap9r1aqVzV5rjDHFKC7vPvvss87HOd+a5c6948aNcz5vHQnGGFO8zMxMGt7zCRTwfVhoaKhdv5pyx+2vdUXkPhGxBaKNMcaYcqC4EV45HQnDhg0ri3CMMcYvFdXpmpiYaHMemHKnJOPD6wErRGS6iFwuNpWoMcYY47eK+288Z7Wcl156iQULFrBjx46yCMsYY/xKQR0Jffv25bPPPivyuH79+jkfd+/evbTDMsZj3O5IUNWngFbAx8CtwDYReVFEWuSuJyKvichmEVkrIt+JSM1cz40Tke0iskVELju7Jhhfd0EL91ZYWJKU7KFIjDGmYsjJu7Nnzy62bk5HQmG5N6cjITAwkP79+9v9u8YYU4Dw8HBSdq/JU/bLL78watSoIo/LmY8mMDCQP//801PhGVPqSrpqgwKHHFsGUAv4WkRezVVtPtBBVTsCW4FxACLSDrgBaA9cTvZykoElboHxea8M6+hW/acPHfRQJMYYUzHk5N22bdsWWzdn1YbCcm/Ot2w2ya0xxhRu9OjRxM95x+X6I0eOBE4vxVupUiWCgmz6OuM/SjJHwv0ishJ4FfgDOFdV7wW6Atfm1FPVeaqa4dhdCkQ5Hg8FpqpqqqruArYDPc6iDcbHPfb1WrfqP1evvociMcaYiqGwvDt16lTefffdPGWh1asDhefe3CMSjDHGFCwwMJDaf7vf5frP5Zr0Foq/zcwYX1OSbq8I4BpV3Z27UFWzRGRwIcfcDkxzPG5IdsdCjn2OsnxEZDQwGqBx48YlCNX4gj92HKWDG6s29K4W4sFojDGm/Css7w4fPjxfWdUq2fUKy73Tp0/n5Zdfpn596+Q1xpiiVGnSqcBVG4piHQjGX5VknGLlnE4EEVkgIutFJE5E1gP/c+wPzaksIk+SffvDlJyiAs5Z4MKqqjpRVbuparfIyMgShGr8natr7hpjjPGM888/n5kzZ9qIBGOM8QDrRzD+qiQjEgYAjwGo6qUAIrLWMRdCHiIyChgM9NfTnwj3AY1yVYsCDpQgDmOMMcYYY4zxW1Lgd6zG+D6XRySIyL0isg5o41iJIWfbBeS7GVNELie7w2GIquaeCnomcIOIVBaRZmSvALH87JphfNnvj13iVv1LbWkxY4w5K+7mXbDca4wxZ+vwx3d7OwRjyow7tzZ8CVxJdkfAlbm2rqp6cwH13wWqA/NFZI2IfACgqhuA6cBG4CdgjKrmX3jVlBsz1rg34GRQjerOx1FRUUXUNMYYUxB38y7kzb3GGGPcV/WcC90/yO5tMH7K5VsbVPU4cBy40cX6LYt47gXgBVdf2/i31+Zu4W43Jlt8MLIO7+09wf/+9z+GDh1a/AHGGGPycDfvwunca4wxpmRqXHCzTbZoKgx3bm343fEzUURO5NoSRcSuPEypGzZsGMHBwd4OwxhjjDGmUCLymohsdtzy+52I1Mz13DgR2S4iW0TkMi+GaXycdSgYf+NyR4Kq9nH8rK6qNXJt1VW1hudCNMYYY4wxxmfNBzo4Jh7fCowDEJF2wA1Ae+By4D0RseVPTB7WgWD8VUmWfzTGLa9ce65b9Z86eMhDkRhjTMXgbt4Fy73GlJSqzlPVDMfuUrJXJAMYCkxV1VRV3QVsB3p4I0ZTNhIXfuD2MdaRYPyV2x0JIjLpjCFbtUTkk1KNypQrbeq5N4HXttRUD0VijDEVg7t5Fyz3GlNKbgfmOB43BPbmem6foywfERktItEiEh0XF+fhEI2nZCbsLb6SMeVESUYkdFTVYzk7qpoAdC61iEy5c9WEP92qP61pEw9FYowxFYO7eRcs9xpTFBFZICLrC9iG5qrzJJABTMkpKuBUWtD5VXWiqnZT1W6RkZGl3wBTJmoOs7nkTcXh8qoNuQSISC1HBwIiEl7C8xhjjDHGx8yaNcvbIRjjc1T10qKeF5FRwGCgv6rmdBbsAxrlqhYFuL82qzHG+KCSdAC8AfwpIl879q/DlnI0xhhjyoWLL77Y2yEY41dE5HLgMaCvqibnemom8KWIjAcaAK2A5V4I0fiw0/1OxvgXt29tUNXPgWuBw47tGlX9orQDM+XHkE713ao/64StJmqMMWfD3bwLp3NvlSpVSjscY8q7d4HqwHwRWSMiHwCo6gZgOrAR+AkYo6qZ3gvTeFr9tH0lPtYmXTT+pqSrNgRz+r6v4FKKxZRTj152jlv137JJhowx5qy4m3chO/cmJCQQGGir0xnjDlVtqaqNVLWTY7sn13MvqGoLVW2jqnOKOo/xf1OfGOHtEIwpMyVZtWEs2ZPIRAB1gMki8o/SDsyUH3dMWuFW/feiooqvZIzJR0ReE5HNIrJWRL47Y4WdcSKyXUS2iMhlXgzTlAF38y5k5177RswYY0pu9ORV3g7BmDJTkhEJdwA9VfX/VPUZoBdwV+mGZcqTLYdOulW/deXKHorEmHJvPtBBVTsCW4FxACLSDrgBaA9cDrwnIva1cznmbt6F7NxrHQnGGFNyJcm91aqFcNtttzF37lwPRGSM55SkI0GA3Pd3ZVLw8jY+IzAwkE6dOtG+fXvOO+88xo8fT1ZWlvP55cuXc9FFF9GmTRvOOecc7rzzTpKTk1FV7r//flq2bEnHjh1Ztep0L+Obb75J+/bt6dChAzfeeCOnTp3K97qfffYZAQEBrF271lnWoUMHYmJiPNpeY0zFpKrzVDXDsbuU7BnCAYYCU1U1VVV3AduBHp6Ox5u5NzIykk6dOjm3jRs3erq5xhjjE7yVe2+77bY8ebdp06bUrVu3TNrszwThk08+4fzzz/d2KMa4pSSrNnwKLBOR7xz7VwEfl1pEHlC1alXWrFkDQGxsLCNGjOD48eP8+9//5vDhw1x33XVMnTqV3r17o6p88803JCYm8ssvv7Bt2za2bdvGsmXLuPfee1m2bBn79+/nnXfeYePGjVStWpXrr7+eqVOncuutt+Z77aioKF544QWmTZtWto32IbVDK0Gi6/WPZGQUX8kYU5zbgZzE05DsjoUc+xxl+YjIaGA0QOPGjc8qAG/m3uHDh/Puu++eVfz+zN28C9m5t66NSDDG73kr93766afOx1lZWVx88cXccsstZdhy7ytJ7jXGX5Vk1YbxZF+gxgMJwG2q+lYpx+UxderUYeLEibz77ruoKhMmTGDUqFH07t0byJ4xddiwYdStW5cZM2Zwyy23ICL06tWLY8eOcfDgQQAyMjJISUkhIyOD5ORkGjRoUODrDR48mA0bNrBly5Yya6OvmTHmArfq37B7t4ciMcb/icgCEVlfwDY0V50ngQyy57OBgkeNFbjelKpOVNVuqtotMjKy1OIu69xb0bmbd8FyrzHlkbdy74svvkhERAR33nmnx9voS0qSe43xVyVatUFVV6rqO6r6tqquLu2gPK158+ZkZWURGxvL+vXr6dq1a4H19u/fT6NGjZz7UVFR7N+/n4YNG/LII4/QuHFj6tevT1hYGAMHDizwHAEBATz66KO8+OKLHmmLP/j4911u1b+lVriHIjHG/6nqparaoYBtBoCIjAIGAzfp6cWp9wGNcp0mCjhQtpGXbe6dNm1aniG2KSkpHmmTr3I370J27rX1zI0pf8oy90L2rRMfffQRH330Uam3xdeVJPca469c7kgQkUQROeHY8j32ZJCe4MrFUkF1RISEhARmzJjBrl27OHDgAElJSUyePLnQ84wYMYKlS5eya1fFTC6f/hHjVv1bwmt5JhBjyjkRuRx4DBiiqsm5npoJ3CAilUWkGdAKWO6NGMsq9w4fPpw1a9Y4t6pVq5517P7E3bwL2bnXOhKMKZ/KKveePHmSkSNH8vHHHxMeXvG+GCpJ7jXGX7nckaCq1VW1hmPL99iTQZa2nTt3EhgYSJ06dWjfvj0rV64ssF5UVBR79+517u/bt48GDRqwYMECmjVrRmRkJMHBwVxzzTX8+eefhb5eUFAQDz/8MK+88kqpt6W8atKkibdDMMYfvQtUB+aLyBoR+QBAVTcA04GNwE/AGFXNLPw0nlHWude4L/eEbMaY8qEsc+8//vEPhgwZQv/+/T3SFmOM73D71gbJdrOIPO3YbyQiHp/9u7TExcVxzz33cN999yEi3HfffUyaNIlly5Y560yePJlDhw4xZMgQPv/8c1SVpUuXEhYWRv369WncuDFLly51znC7cOFC2rZtW+Tr3nrrrSxYsIC4uDhPN7FcKO73aYzJT1VbqmojVe3k2O7J9dwLqtpCVduo6pyyjs1bude4x0YkGFO+lGXu/frrr/nrr7944YUXyrKJxhgvKcmqDe8BWUA/4DngJDAB6F6KcZWqlJQUOnXqRHp6OkFBQYwcOZKHHnoIgLp16zJ16lQeeeQRYmNjCQgI4KKLLuKaa67hiiuuYPbs2bRs2ZKQkBDnbLQ9e/Zk2LBhdOnShaCgIDp37szo0aMB+OCDDwC455578sRQqVIl7r//fsaOHVuGLfcNH4/qxvJ317tcf3KTJrz7WsWdbd2Y8sKbuXfatGn8/vvvzljee++9CrW0lrt5F+Dbtufwz1p2a5kx/s5buffJJ58kOTmZHj3yfr+4ZMmSCnN7WU7ufd/xezGmPBN3v30QkVWq2kVEVqtqZ0fZX6p6nkcidOjWrZtGR0d78iWMh6xYH8vyd9cz8vne1Igo4j+ShN3wdkdO/e0bqvS8tOwCNMZNIrJSVbt5Ow5Ps7zrv1zOu2C51/gNy73G15Uk9zJ2LdSyW3qNbyoq75Zk1YZ0EQnEsXSYiESSPULBmALdMcm9/wz3/f1eD0VijDEVg7t5Fyz3GmPM2SpJ7jXGX5WkI+Ed4Dugjoi8APwOVNy1DY0xxhhjjDHGmArE5TkSRORd4EtVnSIiK4H+gABXqeomTwVojDHGGGOMMcYY3+HyHAkiMha4AagPTAO+UtU1ngst3+vHAbvL6vWKEQEc8XYQZ8Hf4wdrg6/w9zaUNP4mqhpZ2sH4Gsu7pc7a4Bv8vQ3+Hj9Y7i2S5d5SZ23wPn+PHypuGwrNuyWZbLEJ2R0KNwBVgK+Aqaq61c2g/JaIRPvzZD/+Hj9YG3yFv7fB3+OvSMrDe2Vt8A3+3gZ/jx/KRxsqivLwXlkbvM/f4wdrQ0HcniNBVXer6iuOFRtGAFcDdmuDMcYYY4wxxhhTAbjdkSAiwSJypYhMAeYAW4FrSz0yY4wxxhhjjDHG+Bx3JlscANwIDAKWA1OB0aqa5KHYfNlEbwdwlvw9frA2+Ap/b4O/x1+RlIf3ytrgG/y9Df4eP5SPNlQU5eG9sjZ4n7/HD9aGfNyZbHER8CXwjarGl2YQxhhjjDHGGGOM8Q9uT7ZojDHGGGOMMcaYisvtORKMMcYYY4wxxhhTcVlHQjFEJEZE1onIGhGJdpSFi8h8Ednm+FnLyzFeLiJbRGS7iDyeq/wfjvINIvJqIcfma587x5cFEflERGJFZH2uMp96D4oiIo1EZJGIbHL8Lsc6yv2pDVVEZLmI/OVow78d5X7TBgARCRSR1SIyy7HvV/FXJL6ee8t73nXEYrnXyyz3mrJmudeuec+Wv+fe8pJ3wfO51zoSXHOJqnbKte7m48BCVW0FLHTse4WIBAITgL8B7YAbRaSdiFwCDAU6qmp74PUiTnNm+3DzeE/7DLj8jDKfeQ9ckAE8rKptgV7AGBFph3+1IRXop6rnAZ2Ay0WkF/7VBoCx5F2u1t/ir2h8MvdWkLwLlnt9geVe4w2We73nM/w774L/597yknfB07lXVW0rYgNigIgzyrYA9R2P6wNbvBhfb2Burv1xjm06cGlJ2ucod+n4MmxnU2C9L74HJWjLDGCAv7YBCAFWAT39qQ1AlCNp9gNm+fvfUXnffDn3VpS864jJcq+PbJZ7bSuj98tyr/ffg3KTdx0x+23u9de864jR47nXRiQUT4F5IrJSREY7yuqq6kEAx886XosOGgJ7c+3vc5S1Bi4UkWUi8quIdAcQkQYiMjtX/YLaR2HH+xBfeg9cJiJNgc7AMvysDY7hUWuAWGC+qvpbG94CHgWycpX5U/wVjS/n3oqad8F33gO3WO71qrew3OtPLPf6Xu71ld+/2/w195aDvAtlkHuDzubgCuICVT0gInWA+SKy2dsBnUEKKFOy39taZA8p6g5MF5HmqnoAuCJX3XztU9XfijjelvkoIREJBb4BHlDVEyIFvXW+S1UzgU4iUhP4TkQ6eDkkl4nIYCBWVVeKyMVeDse4xpdzr+VdP2K513ss9/oly72We0uFP+def867UHa510YkFMORhFDVWOA7oAdwWETqAzh+xnovQvYBjXLtRwEHHOXfarblZPdGRZx5cCHtw9XjvciX3oNiiUgw2cl0iqp+6yj2qzbkUNVjwC9k38PnL224ABgiIjHAVKCfiEzGf+KvcHw891bUvAu+8x64xHKv11nu9TOWe30y9/rK799l5SX3+mnehTLKvdaRUAQRqSYi1XMeAwOB9cBMYJSj2iiy7/3xlhVAKxFpJiKVgBvIju97su+JQURaA5WAI7kPLKJ9uHK8l/nSe1Akye6C/RjYpKrjcz3lT22IdPTKIiJVgUuBzfhJG1R1nKpGqWpTsv+N/KyqN+Mn8Vc0fpB7K2reBd95D4pludf7LPf6F8u9Ppt7feX37xJ/z73+nnehDHNvQRMn2OacpKI58Jdj2wA86SivTfbkFdscP8O9HOcVwFZgR64YKwGTyU6Sq8iefRSgATC7qPYVdbyX2vcVcBBIJ7vX+A5few+Kib8P2UPv1gJrHNsVftaGjsBqRxvWA884yv2mDbnacjGnJ53xu/grwuYPube8511HPJZ7vd8Gy722leV7ZLnXrnlLow1+nXvLU951xO2x3CuOkxpjjDHGGGOMMcYUy25tMMYYY4wxxhhjjMusI8EYY4wxxpizICKNRGSRiGwSkQ0iMtZRHi4i80Vkm+NnLW/HaowxpcFubTDGGGOMMeYsOGZAr6+qqxyT+q0ErgJuBeJV9WUReRyopaqPeS9SY4wpHX7TkRAREaFNmzb1dhimhDIzsji6P4naDasRGOTCQJjMNDi8gYzAegTVre/5AI1xw8qVK4+oaqS34/A0y7v+r6S5l7rtIbCS5wM0xg3+lHtFZAbwrmO7WFUPOjobflHVNkUda7nX/1nuNeVFUXk3qKyDKammTZsSHR3t7TBMCZ04ksIXTy1h5PO9qRFRtfgDEnbD2x3Zu+k8Gk2b7fkAjXGDiOz2dgxlwfKu/ytp7mXsD1CriecDNMYN/pJ7RaQp0BlYBtRV1YMAjs6EOoUcMxoYDdC4cWPLvX7Ocq8pL4rKuzZHgvFpjT5439shGGOMMca4RERCgW+AB1T1hKvHqepEVe2mqt0iI/1i0IUxpoKzjgTj02LHv+ntEIwxxhhjiiUiwWR3IkxR1W8dxYcdtzTkzKMQ6634jDGmNFlHgvFpJ2b/iIhw6tQpb4dijDEVRtNmzViwYIG3wzDGb4iIAB8Dm1R1fK6nZgKjHI9HATPKOjbjP3qffz59+vTxdhjGuMQ6EoxfiIuL83YIxhhTobz99tveDsEYf3IBMBLoJyJrHNsVwMvAABHZBgxw7BtToIMHD/LHH394OwxjXOLxyRZFJAZIBDKBDFXtJiLhwDSgKRADXK+qCZ6Oxfiv7I5+Y4wxxhjfo6q/A4VdrPQvy1iMMaYslNWIhEtUtZOqdnPsPw4sVNVWwELHvjH53JeU5O0QjDGmQvKX5aGNMaa8SbLrX+MHvHVrw1BgkuPxJOAqL8VhfFzTgOw/URuRYIx7RCRQRFaLyCzHfriIzBeRbY6ftbwdozHGGGPy++KLL7wdgjHFKouOBAXmichKxxq5cMaaukCha+qKSLSIRNs98hXTI1VdWHvXGFOQscCmXPs2EswYY4zxA1lZWd4OwZhilUVHwgWq2gX4GzBGRC5y9UBbU9fksBEJxrhORKKAQcBHuYptJJgxxhjjB6wjwfgDj3ckqOoBx89Y4DugB7amrjHGeNJbwKNA7isRGwlmjDHG+AHrSDD+wKMdCSJSTUSq5zwGBgLrsTV1jYvejMvuY7IRCca4RkQGA7GqurIkx9tIMGOMMca7xo4dS0KCLWhnfJunRyTUBX4Xkb+A5cCPqvoTtqaucdGPJxK9HYIx/uYCYIhj6d2pZK9pPhkbCWaMMcb4lLfffpu1a9cW+Nzs2bPLOBpj3BPkyZOr6k7gvALKj2Jr6hoXLGjRglarttuIBGNcpKrjgHEAInIx8Iiq3iwir5E9AuxlbCSYMcYY43UPPPAAABofk+85u73B+DpvLf9ojFusI8GYs2YjwYxbVNXbIRhjTIWVmZnp7RCMKZJ1JBhjTDmlqr+o6mDH46Oq2l9VWzl+xns7PmOMMcbAa6+/nq/stttu80IkxrjOOhKMT1uSlAzYiARjjDHGGFM+TZgwwdshGOM260gwPu3pQwe9HYIxxhhjjDHGmFysI8H4tOfq1Qey79WNjo4mLS3NyxEZY4wxxhhzdmweGuPvrCPB+LTe1UIA2LFjB927d2fs2LFejsgYYyoGu8g1xhjPsRxr/J11JBi/cOTIEQCio6O9HIkxxhhjjDFnxzoSjL+zjgTjF3KSrU26aIwxZSM2NtYudI0xxkOysrK8HYIxZ8U6EoxPu3THDgCuuuoqwDoSjDGmrKxcuZKAgAD27NnDww8/THJysrdDMsaYcsM6ao2/C/J2AMYUZVCN6rx3/IRz3zoSjDGmbDVp0gSA2rVr88QTT3g5GmOMKR+sI8H4OxuRYHzag5F18pW98MILtGzZ0gvRGGNM+ZZZxFDbjIyMMozEGGPKN7u1wfg760gwfkVEeOqpp9jhuOXBGGNM6VmxYoW3QzDGmArBnREJf/31FyLCxo0bPRiRMe6xjgTjV+zWBmOM8aAiLmxz8m96ejonTpwotJ4xxpjiudOR8NVXXwEwY8YMT4VjjNusI8H4tKcOHvJ2CMYYU2EoxXckXH311YSFhZVVSMYYUy4lJia6XDczMxOAwMBAT4VjjNusI8H4tG2pqXn2bUSCMcZ4148//ujtEIwxxu9dfPHFLtctaUfC77//TkJCglvHGOMq60gwPm1a0yZ59o8dO+adQIwxpgIoaqTt008/zdGjR8suGGOMKce2bNnict2cjoTHH3/c5WMyMjK48MILufzyy92OzRhXWEeC8Ss2yYwxRRORRiKySEQ2icgGERnrKA8Xkfkiss3xs5a3YzX+Z9KkSd4OwRhj/Nb27dt55513SnxMRkZGsR26R44c4amnniI9PR2AlStXlixYY4phHQnGb9n6u8YUKAN4WFXbAr2AMSLSDngcWKiqrYCFjn1j3GJ51xhjSu7CCy9k7NixnDp1yqX633//PW+99VaesuI6dMeMGcMLL7zA7NmzAcvbxnOCvB2AMWdKTExEkpIIBWYVMTN4VlaWTTpjzBlU9SBw0PE4UUQ2AQ2BocDFjmqTgF+Ax7wQovFhdsFpjDGekzOaYOHChS7Vv/rqq/OVpaWl0aZNGwICAti0aRMAy5cv5/Dhw1x55ZWkpKQAcPjwYSD7etkYT7ARCcbn1KhRgw4dOgDwVlxcofUsMRpTNBFpCnQGlgF1HZ0MOZ0NdQo5ZrSIRItIdFwR//6MeeCBB7wdgjHG+LRH/vlInv2cztrBgweX+Jzjxo1j69atbN68GYAVK1bQs2dPhgwZkqfemDFjnI9nzZrFDz/84FwpIikpydnhAPDmm28yd+7cEsdkKibrSDA+7b2oqEKfy5l4xhiTn4iEAt8AD6hq4UN7zqCqE1W1m6p2i4yM9FyAxicdPXqkyOdzj1h4++23PR2OMcb4pZyldL/5+pvTZapkZGSU6uscP36cHj165Cn74Ycf8tW78sorGTJkCCNHjiQpKYnQ0FDq1q3rfP6hhx7i8ssvd/lLup9++smuw411JBjf1rpy5UKfswRmTMFEJJjsToQpqvqto/iwiNR3PF8fiPVWfMZ33X//WG+HYIwxfm/69P85H9euXZvg4GACAkr/Y1fTpk3z7BfXETBjxgx69uwJ4BydkNu0adOcj8+81W3Tpk189NFHTJkyhb/97W+88soreequW7fOuZ+UlOScB2L06NHUqFHD5XkhjP+wjgTjt6wjwZj8RESAj4FNqjo+11MzgVGOx6OAGWUdm/F/CxYs8HYIxvgdEblcRLaIyHYRsYluK4DHHzs9BVF8fHypj0TIceay6K7MHbZhwwbn49WrV7Nt2zbn/ieffEJmZiZvvfUWAQEB9O3bF1Xl/fffp127dtx1113cfPPNADz55JO0b9+eQYMGMXDgQDp27Mi5555Lu3btCA0NpXXr1pw4cYIPP/yQxMREWrduzY4dO1i2bBmTJk3i5MmTBXZ8fPbZZ2zdupUtW7Ywd+5c51wPZzp58iQJCQmu/JpKxfHjxz3+Gvv27fOrzzc22aLxaUfOSLwBAQHOpGNzJBhToAuAkcA6EVnjKHsCeBmYLiJ3AHuA67wTnvFndg+tMe4RkUBgAjAA2AesEJGZqlroetYJCQk8+eSThIWFcezYMVq0aEHdunVJSUkhMTGRzz//HFWlRo0a1KhRg+7du1O7dm0SExNRVapVq8asWbPo2LEjffr0ITU1lbi4OESEtLQ0atasyeHDhznvvPPYtm0bmZmZ1K9fnz179lCzZk1WrlxJy5Yt6dy5M5UqVeLAgQPEx8ezYsUK6tevT8OGDWnatCkxMTGEhIQQEhLC7NmzSU1NpXr16rRt25ajR48SGRlJ48aNiY+Pp1q1agQEBPDbb7+RmppKVlYWHTt2JCkpiaioKI4fP06lSpU4evQolSpVIiMjg9TUVIKCgoiPj6dSpUp0796d1atXU7t2bfbv38/GjRtp1qwZdevWpW7dukRGRlK3bl127NjB1q1b6dKlC9u2baNJkyZA9hxcR48eZffu3cTExHDs2DGSk5PJyMjg/PPP588//+Tw4cNcfvnl9OvXj8WLF5OcnExoaCi///47bdu2pXLlyrRq1Yrg4GC2bt1KnTp1qFKlCrt27aJ69er8+uuvzJw5k/DQuoW9vT6lS5cuefYXLFhAUNDpj4e//fZbkSMpNm7cmGdp9vXr1zsf7927l7CwsDz7LVu2dO7feuutLsdZtWpVmjRpwubNmznnnHOc80Pk6N27N0uWLKFx48Y0aNCApUuXEhISQnBwMDfeeCOhoaG8/vrreY5p3bo111xzDVu3bmXRokXUrVuXgwcP0rBhQ7p168YXX3xBlSpV6NKlC6tWrXLOKdGwYUP279/vPM+VV15JWFgYf/75Jzt37gSyR6HceuutVKlShY8//phq1aqRnp7OyJEjOXbsGGlpacTGxvLjjz8iIs6lOnP797//TdWqVUlISKBevXrMnDmTVatWUalSJS688EJ27NjB4MGDSUlJQVWZNGkS/fv3JyAggLZt27J3717Wrl3Lnj17aNeuHQcPHqROnTq0bNmSfv36kZCQwKlTpzhx4gRBQUHs37+fDz74gNDQUAYNGsScOXPo06dPke+L+MsMzd26ddPo6Ghvh2FK6MSRFL54agkjn+9NjYiqRdYVEZqECTEPVKfpW4nsPn76bzQ4ONj5j+3IkSPUrl3bo3EbUxARWamq3bwdh6dZ3vV/7uRegKY1AwrMvYXxl2sIUz74Y+4Vkd7Av1T1Msf+OABVfamIY+wflp8LD63Lszd9yTNTRhB/suBv1HMr7LrXGB9QaN61EQnGp5w5yuCWWuE8d/yocz93j92pU6dIT08nODi4zOIzxhhz2r59+4gqYlJcYwwNgb259vcBPc+sJCKjgdEAYWFhXH755YSFhbFq1SrOP/98IiMjqVOnDtHR0SxatIhGjRqRkZHBsWPHCAsLY/jw4ezbt48TJ07QoEEDpk2bRtOmTbnuuuuc3zru2bOHGjVqEBAQQHx8PN27dycpKYk9e/ZQtWpVjh8/TsOGDfnxxx/p3r07F154IWlpac5vQRcvXkxKSgpDhw4lKiqK1atX06VLF9LT0/nvf/9LfHw8DRs2pEePHqxdu5akpCR69uyJqtKjRw+SkpL473//y6FDh6hduzYDBgzg6NGj1KpVi6SkJGrWrElCQgInTpwgMjKSmJgYVJWsrCwCAgIYOHAgCxcupHr16mzZsoXq1atTo0YNwsLCCA0NpU2bNoSHh7NixQr27dvHddddx3fffcdFF13kPEdKSgq7d+9m+fLlrF+/nho1aiAinHvuuRw+fJhly5Zx4YUXcscddzB37lzWrFnDRRddxNdff83gwYNRVTp37kyVKlVYu3YtUVFRVK5cmZSUFDZt2sTKlSvZsmVL2fxlmQLVqlUr3y0PLVq0YMeOHfnq3nzzzaSlpTF9+nQaN27Mnj17CAsLQ0Ty3DbSoEEDDhw4UODrXXHFFWzevNk5GiHHRRddREREBN9+mz1VVceOHTn//PPZtWsXe/bs4dixYxw8eJC2bds6l/HM7cYbb2Tz5s1UqlSJLl26MG3aNOLj4wG46aabWL58Oa1atSIhIQFVZenSpc5j+/btS2pqKhEREezcuZNKlSpx8OBBIiMjadeuHV27dmXVqlUEBgayY8cOqlatytq1a53nd5mq+sXWtWtXNf7reFyyvnv3Qj0el1xkveeee04BbRImqv9XQ7d1aalAods555yj6enpunDhQs3KylJV1S+//FK3b99eFs0yFRQQrT6QFz29Wd71f67mXlXVgwcPOnNvkzApMvfm3ubPn+/Mv8Z4kj/mXrJvI/so1/5I4D9FHWO51/+Fh9bVd+9eqOGhdV3KoyXJvZ7a1q5d63y8Zs0aTUxMVFXVWbNmFVj/4osvLrD8hx9+0LFjxzr3O3bsqPfcc48+9NBDqqqakpKihw4dyvN7W79+vd5www2akJCgqampOnfuXF2/fr1mZmaW+XuYkpJSpv+3paSk6Lp16/L9TrytqLxrIxKMz9i0aRNPP/20W8ds3ryZ888/nxUrVrBixQo6derEiBEjaNCgQZ77l4wxxhTt3HPPpVoJjhswYAATJ07krrvuKvWYjCkH9gGNcu1HAQV/tWlMGXjhhReYOXMm3377LQ0aNACybysGWLNmDeeeey5jx45l6NChnHfeec7jBg0axNq1a7n77ruZPHkyISEhXHvttUyePJldu3Zx/PhxGjRowNSpU5k/fz6DBw9m8ODBPPXUUyxcuJArr7ySkJAQ5/mqVKlClSpV8sTWvn17vvrqK+f+wIEDPfmrKNKZsZXF63Xo0KFMX/NsWUeC8RmxsSVbjW7FihVA9lIza9euBSjTWVyNMaY8OHLkCNXCpETHxsTElG4wxpQfK4BWItIM2A/cAIzwbkimLE2dOpVevXrlW6rRE5o0acLu3bvzledMUgjwxBNP8MQTTxR4fE7HwVtvvVXg8+eeey5//vmnc/+PP/4AsicgzNG5c+c8S0NGREQwfPhw9xpi/IIt/2i8Ij093bkUTlpaGuPHj2fmzJn56t27b2++ssKsWbOGrl27ApCSksLq1auZNWsW3377LSLCL7/8UiqxG2OMMca4QlUzgPuAucAmYLqqbij6KFOe1KtXjyZNmpCRkeH8xvnGG28s9ddZtWoVGzduZN26dfmea9OmTZHHHjhwoMA5BIwpio1IMGXqiSefoFP39tx9991kZWXx6aefsnXrVl56qdDJi132wAMP5Nk/c0mbSy65BICWLVvy4YcfcuGFF/Loo48yfvx4Nm7cSHx8PCLC+eefX+IYMjIyCAwMdA4RM8aYiiD7Nsrsnzt27OCuu+4iPDycb775xsuRGeN9qjobmO3tOEzZqVs3e/nH119/nYsuugiAwMBAVq9ezfTp0xk4cGCeIfzuuu2223j00Udp27atsywyMpKQkBA6dOhA69at2bp1a55jJk+eXOhkevXr1y9xLKbi8tqIBBG5XES2iMh2EXncW3GYsvXVl19x1113OVdnuO2224rsRHg/qlGhz5XU9u3bueSSS/i///s/xo8fD0C7du3o06cPF1xwAStXrmTfvn38+uuvvPHGG3Tv3h0RYdy4cSQmJrJq1SpOnDiR3Z6vvmLlypVAdk9wcHAwDz74IImJic42btu2jaNHj3LOOecQHR1NWloabdu25e2333YpXlXl8OHilw4yxhhvGz9+PK1ateKXX35xzlRtjDEVzffffw/Atddem+fLpaCgIEaMGEFERMRZnf+tt97inHPOydMxkNOhC7Bs2TKeffZZAOdo3Ztuuol//OMfZ/W6xuTmlREJIhIITAAGkD0JzQoRmamqG4s6LjMzk4CAAFSzl4LJyMggICAAESE4OBhVJSUlhapVq+a8DllZWaSmphIYGMj+/fupU6cOVatWJSAgwFkO2UPtK1eunOcfu4hw6tQp52QbWVlZiIjzvAEB2f0wx48fJzQ0lGPHjlG7dm0g+37/kJAQ5/GhoaFkZGSQlpZGcHAwwcHBrFq1ipYtW7Jnzx7q1q1L9erVCQwMJCgoyPn6OUkhp12qSkBAAFlZWaSnpxMUFORsA+D8HQQEBFClShVUlfT0dCpVqoSq5mlfzn7un6pKUlISVapUISgoiF27dhEaGkpkZKTzmLS0NDIyMkhNTXW2N+d3kxNfSkoKVapU4dChQ0RERLBt+7aS/Kl41AsvvFBgebduBS9R/fLLL/Pyyy8X+Ny1117r/Obt7bffLrSToHv37s7HDzzwAG+99RYxMTE8//zzTJ8+nbVr1/LII4/w+uuvO9/nguTMB/Hmm28SFhbGY489xmeffUabNm3IyMhAREhLS2PkyJHs3LmTbt26MXbsWK655hoWLlxI7dq1ef3112nTpg0XX3wxLVq0ICIigtTUVHr06MGkSZNQVebOnUufPn3o0aMHqampZGVl0blzZ2rXrk1sbKxzqaecv8GceS4aNWrE/Pnz2bp1K40bN2bbtm106dKFuLg46tevz5EjR0hNTaVPnz60aNHC+Xdy6tQptm/fztGjR2nRogU//fQT4eHhNGjQgK5duxIcHJznbzY2NpYqVaqwbt062rdvT2pqKrVq1eL48eOkpqaSmppK8+bNSU9PJzk5mSVLltCxY0cSEhKIjIwkIyODBg0asHHjRtq2bUtCQgLHjh0jODiYRo2yO7HWrFlDy5YtqVWrFqdOncrz780Yk+2ll15i06ZNzJ07t8h6kydPpnPnzrRv376MIjPGmLJXr149YJfHzp9zLVKrVi0aNWrE3r1781wz1qxZk6eeeoomTZp45DYKY8B7tzb0ALar6k4AEZkKDAUK7UhYuXKl8wO2qypVqkRaWlqJgyzs+LM9r6vCw8MLHIJUtWpVUlJS3D5f5cqVqVWrFidPnqRKlSocOXKE4OBg0tPTzyrOiIgIjhw54twv6ANweGhdnr3py7N6HV9W0uG7OROUPfXUU86y119/HaDQTgSAatXyzq3+4YcfFlhv9OjRzscFdYRs3bqVH374ocgYZ82aVeTzxhj/t2fPnrM+R843cEUZOXIkkPebM2OMMYU78zobyPOZ6IsvvuBf//pXngkPIfsLyVtuuaVMYjQVk7dubWgI5J5Fb5+jLA8RGS0i0SISnfPtf2Hq1q3rvCe+a9euDB06lOHDhxd6z0+7du3ylfXp04devXoB2bOeXn755YgIV155pXPY+znnnEPXrl2pV68e/fv3z/MNc845Lrvssnzn7tChQ57RADVr1iwwrmrVqhESEkLHjh257LLLCA0NdT6XMzJi0KBBNGzYkODgYADatm1LSEgIV1xxRZ54Kleu7PxWtWXLlrRr145BgwZxww03MHDgQAYOHMjf//53Gjdu7KyXO76oqCjnfvv27bnwwgvzxTts2DAuu+wyZywAQ4cOdf4Oz9bn8bb6Qlkri1mFC5OzDJErwsPDS+U1C1ve58x/ozl/z9dee22pvK4xvsRTS2yJiHM1ndzmzZvnkdczxhh/8c477xRbJykpib179/Luu+/mKc/dkdC3b18WLVrk9heuxpwtb/3FFTQTXb6vJ1R1IjARoFu3bhodHe3puCqkwpZ4ccfkyZOLfP7EkRS+eGqJ2+f9PKHgSWHKwltvvcXq1auZNGmSs+yNN97g4YcfBuDCCy8kLCyM5ORkPv/88zwdLwB///vfuf7665k7d26eeSDefPNNXnvtNUaMGMGCBQuYMmUKkZGRnDx5kri4OMLDw2nVqhUXXXQR7733HosWLeIf//gHkZGR9OrVixEjRnD99dcTEBBAeno6O3fupEqVKlSqVImgoCAiIyNJTk7mjz/+YMCAAQCcPHnS2Sl14MAB6tatS3JyMtWrVwdg9+7deTp+4uPjqVWrFklJSQQEBDhv01m1ahWdOnXKsw5wUeLi4oiLi6N58+bOD+zJyckAznPk3I5T0DlzvrUsyeSVnpz40ibTNOVNXFycx849adIk3njjjTxll112mcujEnbt2kWjRo2cF8lTp05l8eLFTJgwodRjNcaYslKjRo1i6+RcGw0ePJj77rvPWV7cF6zGlAVvdSTsA3J/BR4FHPBSLMaHTW3ShN5rY0r9vDfddBNTpkwBsofuT5s2jS+++AKAKVOmMGLE6SWe7733XtasWcNdd93l/FAdGRmZ75vp+vXrExwcnG/93r59+/L444/z/vvvO2cyP3OFCciebbdZs2ZA9oftoKAggoODad++PaNGjXJ+6M8tODi4wCV9QkJCnJ0IQJ6RLTnf+uc+35mjR3K+7T9zRIy7K1pERkY659fIHVtuIlJox8TZfGC3nnljTmvWrBnTvptM//792b17N02bNiU2NpabbrqJ5557rkxiOLPj4MSJE84L6eTkZH788Ucuuugi6taty6FDh6hUqRKZmZk0b96cf/zjH85v73Lu9y2oI0FViY+Pd87fc6bVq1ezZcsWbrjhhtJsmjHGuM2d65TcHQeff/65faFhfIK3urNWAK1EpJmIVAJuAGZ6KRbjJQ8//DDLly9n4cKFAFxwwQX56kSc5YfB/fv3F1g+efJk5wfcQYMG8dprr/H3v/+d1NTUPJ0IAD179uTuu+92JvF77rmnwOHt+/fvz9eJkKNGjRo89thjLg/Hr1q1ap7bRQrqRDDGGHcMGDCASZMm0axZM/744w9uvvlmFixYQO/evQtdEqw0pKen8+ijjzJs2LA85WFhYc65Ga6++mquv/566tWrh4hQv359ateuzfXXXw/ADz/8QFpamvPWOYCdO3dy5kjFl19+mYiIiEJzf5cuXbjxxhvJzMx0lqWmpjonii3Ib7/9xr59+9xrtDHGFKNy5cou183pOGjQoIFzrhljvM0rHQmqmgHcB8wFNgHTVXWDN2IxZeuOO+5g1KhRqCqvv/463bt3p1+/fnz66ad8++23Lt0vVpiCvlVr0KABEydO5P/+7/9QVU6ePOm8INy6dSsHDmQPhKlbty4TJkygUqVKJX596x02/sCW3q3YbrvtNgB+/PFHdu3y3Iziuf3nP//htddeK3A5yCZNmnD48OFC50z45ZdfADh48CBNmjRh5szT3zm0aNHCuTzvpEmTmD17tnOk2ZYtW3jkkUcQEd544w0SExPzzCE0atQo57mvu+466taty44dOwqMoW/fvvnmETp+/HieCXH/+OMPj94eYowpf6666iq3j7FrTeNLxF9mTrY5EvxbzhwJI5/vTY2IqoXWy7lXvkmYEPNAdWZ/HcagDXsLrZ9beno61apVc66oUbt27Xyz3BpTGkRkpaoWvE6oD3MsvbuVXEvvAjcWtvRuSfJuenp6ntE0FdHBgwcLnei3rB2LS2LK08t4ZsoI4k8eLrZ+Tu5t+lYiu4/7x/WBK+rXr8/BgwfzlX/55Zd5RqHVqlWLkJAQmjZtyhtvvEGDBg1o3LgxAJ07d2b16tVcd911/O9//2Po0KFMnDiRtLQ0Z0fD0aNHWbduHfXr1ycjI4OvvvqKIUOGEB8fz5QpU+jevTtXX301P/30E8899xwXXnghQ4YM4YsvvuDLL79k7ty57N27lwcffNAZU0pKChs2bKB27dqICPXq1SM9PZ2srCwOHTpE7dq1ncvTpqSkcODAAQ4dOkSLFi2YNWsWI0aMoHLlytSoUYMNGzYQGRnp7ATJXqIuv4yMDFasWEH79u1duo87LS2NxMRENm/eTIsWLfKc98SJE/z55580btyYxo0bk5SURFJSEl999RW33347lSpV4tChQ9StW5eIiIgiX8dfc6+77JrX/7l63ZvTMVBY7s35nLZ3714aN25MVFQUe/e6dl1sTGkoMu+qql9sXbt2VeO/jscl67t3L9TjcclF1jt16pQC2iRMVP+vhjYJEyV7Is5iN1XVSy+9VAH9+uuv9eTJk2XRNFMBAdHqA3nR3Q3oDczNtT8OGFdY/dq1a2ujRo20Tp06CqiIaOvWrfP926tZs6ZL/0ZbtGiRZ79Dhw756jRv3lxvvvlm537btm21S5cuCmilSpW0adOmLueEM7devXppeHi4BgcHF1qnffv22qdPH61Xr16e8iuvvFLbtGmTr35YWJhbMVSpUkW7d++uF198sV533XU6YMCAYn9nOe0/cwsODtZatWrlKatataoOHDhQe/XqpYCGh9bVd+9eqOGhdV2KryS51zbbymKrUqWK4qe5193Nrnn9n6vXvTl/34Xl3hy7d+9WQBs1auTp0I3Jo6i8a7ORGZ9y5iy0D0RG8uDxgu9d7dChA+vXr89TlnPPb48ePahWrZrH4jTGTxW09G7P3BVEZDQwOmf/6NGjzudUla1bt+Y76bFjx1x68TOHjp/57xey73vfuXOnc3/Tpk3Ox2lpacTExLj0WgVZunRpsXU2bCj4LrsffvihwPLjx4+7FcOpU6dYsWKFy/ULG24P2aM/EhIS8pSlpKTY0oqmXLIJdE159Mknn3D77bcXWy/785wxvsWysvEpZ3YkDK5RgwcpuCPhvPPO48cff8yz4sCoUaO45ZZb7B4yYwpW7NK7esayuz/99BPVq1dnyZIlNG/enIiICDIyMkhMTCQ9PZ3KlStTuXJlAgICWL16NTt37qRp06Zs3bqVFi1a0L59e9auXUtwcDAXX3wxcXFxVKtWjczMTMLCwoiJiSEoKIg6deqwZ88eIiMjqV69OikpKWzdupUOHToQHBzMihUraNasGVWqVCEzM5PDhw8zZ84cunTpQo0aNViyZAlDhgwhIyOD2rVrk5aWRmhoKDt27CAoKIimTZsC2Z0RSUlJxMfHk5iYSFBQEJUrV6ZWrVoEBwdTu3ZtsrKyOHXqFPv27aNKlSqsWLGCa6+9lpSUFH766ScuuOACKleuzKlTpwgPDycxMZGUlBS++eYb6tSpw9SpU3nmmWdo06YNa9eupWnTpqxdu5ZWrVpRt27dnN8zVatWJSsrixMnTrB+/XqqVatGy5YtSU9PJyAggKSkJBo2bEhgYCA7d+5k8+bNJCUlcerUKfr27UtYWBiVK1dmy5YtJCQkUL9+fZo3b05QUBDp6ens2bOH/4z/wKN/UBVdmzZtuOCCC/jkk08AWLBgAevXr2f8+PHUrl2b1atXF3uOW265hW+//Za7776bkydP8tNPP3HdddcxdOhQkpKSSE5O5pprriE8PJyQkBA6dOhAjx49ePbZZ4HsWy727NnD0aNHueKKK0hKSiI0NJSIiAjn8sWhoaHMnTuXyZMnc/LkSWrWrEmnTp0YOHAgM2fOJD4+ni1btjBq1Ci2bt3K8uXLmTRpEmPHjqVBgwZERkbSokULOnbsyMqVK1m9ejURERGkpqbSsWNHtm3bRmJiIgkJCdSqVYtKlSoREBCAiPDDDz+wd+9emjVrRnJyMp06dWL//v3O2IYNG0bjxo3p3bs3HTt2ZOPGjaSkpNChQwdiYmI4cOAAvXv3pm3btmc1j5Ex5YFd3xpfYnMkmDLh6r1iqkpAQIDzXrHtP9Sh1artBda96aabmDx5sjOp+svfsvF//nqfroj0Bv6lqpc59scBqOpLBdW3vOv/KtIcCfPnzyckJIQLLriAnj178vDDDztXfZg3bx4DBw7Md8zgwYOpWrUqq1atYvTo0YwZM4bg4GBEhKysLDIzM/n111+pUqUKffv2dQ7njI2NpXbt2i7Pun7y5Eluv/12br31Vjp06MDJkycJCwsjLCwszzK77jh58iRAiY/3R/6ae91ludf/uXrd+8knn3DHHXcUO0dCTEwMzZo1o0mTJmc1Ms8YdxWVd21EgvEpJelpDQwMzLOUlzGmUM6ld4H9ZC+9O6LoQ4w/C5C8o7y2bdvGRx99xKZNm/KsgOBNV1xxBbNnz85T9u9//5sqVarw2GOPAdCjRw+WLVtGcnJyvtvWWrRowYYNG5wf6tetW0f79u0REX766Sd69+5NjRo1OHz4MC+++CJvv/02N910E1OmTOHTTz8tdoK/v/3tb/nKGjRo4FYbQ0NDmT59ulvHuHJOY0z5cN111wE/Ffp8zq09hU2Qaow3eGX5R2NcNTxmd7F1Dh8+bGt8G+MCtaV3K6w6deoAULVqVV5++WVmzJjBmDFjABgyZAj/+9//vBLX77//ztSpU1m2bBk//ZR9EX3LLbfwzDPP8Mgjj9CrVy8AZ6whISFMnTo1zzlydyJA9vw5OZ3Sl112mXPVgTp16jB+/HgOHTrE5MmTUdViOxGMMcaTcnJzw4YNi6wXFRXFxx9/zIwZM8oiLGNcYiMSjE9rVbkyq0gvsk7t2rXLKBpj/J+qzgZmF1vRlCvXXXcdz72yjpo1azrLunfvDkBYWBjDhg0rkzg++eQTAgMDqV+/PqGhofTu3RvIHnEAOOeHgOw5cxYvXszUqVPzLNE4fPhwunTpQuXKlalWrZrLtxfknDNnngpjjPG2QYMG8f333zPognPh3Y+LrOvKpIzGlCXrSDA+7fn69Zh2sOA5Emx4lzHGuOahhx9i3P89QtWqp+/VzcrKAvJPcltSjRs3Jjw8nDVr1jjLlixZQmRkJCNGjGD58uWMGjWqyNc7c2b+oKAgbr755nz1WrVqVSoxG2OMN4kIQ4cOhYTiR+Aa42vs1gbjt55//nlvh2CMMX4hQALydCIADB06lE6dOvHEE0+UymtUqlSJ1atXM23aNACuvfZaevXqRYsWLZg7dy5Lly4ttU4LY4wp78477zxvh2BMkWxEgvFbVapU8XYIxhjjt8LDw11antBV77//PnB6IsKOHTs6n6tZsyY9e/YstdcyxpjybsGCBd4OwZgiWUeC8TkPP/wwQ/t2hpV/5824WG+HY4wxphgRERFceumlAPTp04fFixc75z8wxhjjvjNHkRnja6wjwfic119/PftesZXw44lEb4djjDGmGD/++GOe/T59+ngpEmOMKR9KsiS6MWXJblY0Pm1BixbeDsEYY0wxIiMjvR2CMcYYY8qQdSQYY4wx5qxERER4OwRjjClXbESC8XXWkWD8yquvvurtEIwxxuSydu1aqlev7u0wjDHGGFOGrCPB+LQlScl59u+44w4vRWKMMaYgqurtEIwxptyxEQnG11lHgvFpTx86mGff1iA3xhjfUq1aNW+HYIwx5Y51JBhfZ5/KjE97rl79PPvWkWCMMd7VtWtXAIYOHcqcOXNoYZPiGmOMMRWOfSozPq13tZA8+9Y7a4wx3nXBBRcAEBISwuWXX+7laIwxpnyya17j66wjwfgVG5FgjDGeMXHixGLrbNmyhZ49ewI2N4IxxniSdSQYX2efyoxfCQgIYM+ePezbt8/boRhjTLly/vnnF1unTp06zotb60gwJpuIvCYim0VkrYh8JyI1cz03TkS2i8gWEbnMi2EaY0ypso4E49Mu3bEjz76I0KhRIxo2bOiliIzxXXYxa85G+/btef3114utZx0JxuQzH+igqh2BrcA4ABFpB9wAtAcuB94TkUCvRWn8io1IML7OOhKMTxtUI+/a5HZrgzFFsotZc1aGXXttkc+LiHUkGHMGVZ2nqhmO3aVAlOPxUGCqqqaq6i5gO9DDGzEa/2MdCcbX2acy49MejKyTZ986EowpnF3MGk/L3ZFgjCnQ7cAcx+OGwN5cz+1zlOUjIqNFJFpEouPi4jwcojHGnD37VGb8il3AGuMyu5g1pS53DrYRCaYiEZEFIrK+gG1orjpPAhnAlJyiAk5V4D8cVZ2oqt1UtVtkZGTpN8D4HbvmNb4uyNsBGOMOG5FgKjoRWQDUK+CpJ1V1hqPOWV3MAhMBunXrZp8UTR52a4OpqFT10qKeF5FRwGCgv57+x7EPaJSrWhRwwDMRmvLGOhKMr7OOBOPTonv2gFXbAXjttdcsqZoKzy5mjTdZR4Ix+YnI5cBjQF9VTc711EzgSxEZDzQAWgHLvRCiMcaUOvt61/i042E1vR2CMX4j18XskAIuZm8Qkcoi0gy7mDUlJCL06tULgDvvvNPL0RjjM94FqgPzRWSNiHwAoKobgOnARuAnYIyqZnovTONP7Msz4+tsRILxaf3nzfN2CMb4k3eBymRfzAIsVdV7VHWDiORczGZgF7OmhFSVqKgoG41gTC6q2rKI514AXijDcIwxpkxYR4LxG9Yza0zR7GLWeJp1IBhjjDEG7NYGY4wxxrjIOhKMMcYYAx7sSBCRf4nIfse9YmtE5Ipcz40Tke0iskVELvNUDMb/7WncxPm4WbNmXozEGGNM9erVvR2CMcYYY3yAp0ckvKmqnRzbbAARaQfcALQHLgfeE5FAD8dh/NS6TucBcMkll3DNNdd4ORpjjKm4GjZs6O0QjDHGGOMjvHFrw1BgqqqmquouYDvQwwtxGD/Q55dfs3/26ePlSIwxpmKzeWqMMcYYk8PTHQn3ichaEflERGo5yhoCe3PV2ecoy0dERotItIhEx8XFeThU44vCThz3dgjGGGOMMcYYY3I5q44EEVkgIusL2IYC7wMtgE7AQeCNnMMKOFWBszep6kRV7aaq3SIjI0scZ2BgIJ06daJ9+/acd955jB8/nqysLAB++eUXwsLC6Ny5M23atOGiiy5i1qxZzmNTU1MZPnw4LVu2pGfPnsTExDif27NnDwMHDqRt27a0a9cuz3M5/vWvfxESEkJsbKyzLDQ0tMRtMcYYf+Ht3NuwYUM6derk3I4dO+bhFpcfPXrkHyjYvn17L0RijHGXN3PvZZddlifvNmjQgJ49e3q6yeWOTWxr/MFZLf+oqpe6Uk9EPgRystQ+oFGup6OAA2cTR3GqVq3KmjVrAIiNjWXEiBEcP36cf//73wBceOGFziS6Zs0arrrqKqpWrUr//v35+OOPqVWrFtu3b2fq1Kk89thjTJs2DYBbbrmFJ598kgEDBnDy5EkCAgrul4mIiOCNN97glVde8WQzy6VTlSt7OwRjTAl5O/c++OCDPPLII55vaDkUGJg9ddHkyZM5cuQIHTp0oHv37l6OyhjjCm/m3rlz5zofJyUl0bVrV55//nkPt9gY4w2eXLWhfq7dq4H1jsczgRtEpLKINANaAcs9FceZ6tSpw8SJE3n33XcL7O3r1KkTzzzzDO+++y4AM2bMYNSoUQAMGzaMhQsXoqps3LiRjIwMBgwYAGSPMggJCSnwNW+//XamTZtGfHy8h1pVfi0YONDbIRhjSoE3cq85e/Xq1WPs2LH079+fGjVqeDscY4ybvJl7x44dyxVXXOE8xhhTvnhyjoRXRWSdiKwFLgEeBFDVDcB0YCPwEzBGVTM9GEc+zZs3JysrK8/tBrl16dKFzZs3A7B//34aNcoeQBEUFERYWBhHjx5l69at1KxZk2uuuYbOnTvzz3/+k8zMgpsRGhrK7bffzttvv+2ZBpVjrbds8XYIxphSUta5980333QOr73kkks806hyyiZWNKb8KOvcC/Ddd98RHR3NSy+9VPoNMsb4BI91JKjqSFU9V1U7quoQVT2Y67kXVLWFqrZR1TmeiqGY+Fx6rqB6IkJGRgaLFy/m9ddfZ8WKFezcuZPPPvus0HPef//9TJo0iRMnTpxV3BVN661bAbuoNaa8KMvc++CDD7JmzRrWrFnDokWLzjr2isTuzzWmfCnL3Lt//37uv/9+vvzySyrbLarGlFveWP7R63bu3ElgYCB16tQp8PnVq1fTtm1bAKKioti7N3uRiYyMDI4fP054eDhRUVF07tyZ5s2bExQUxFVXXcWqVasKfc2aNWsyYsQI3nvvvdJvUAVgF7XG+D9v5F5jjKnoyjL3qiqjRo3i8ccfp127dp5rlDHG6ypcR0JcXBz33HMP9913X4Hfcq9du5bnnnuOMWPGADBkyBAmTZoEwNdff02/fv0QEbp3705CQgI5y1L+/PPPxSbMhx56iP/+979kZGSUcquMMca3eTP3GvfZKDBjyoeyzr2vv/46VapUcZ7PGFN+ndWqDf4iJSWFTp06kZ6eTlBQECNHjuShhx5yPr948WI6d+5McnIyderU4Z133qF///4A3HHHHYwcOZKWLVsSHh7O1KlTgewZrV9//XX69++PqtK1a1fuuusuAJ555hm6devGkCFD8sQRERHB1VdfzZtvvllGLfd/a6+8Ela9WWgvujHGd3k797755ptMnjzZ+Xrff/89TZs2LaPW+7cGDRoAUL16dS9HYoxxlzdz71NPPUVUVBSdOnVyvl6tWrXs9jJjyiHxlyHj3bp10+joaG+HYUroxJEUvnhqCSOf702NiKrFH5CwG97uSPJl0/lme/bSRTnLkRnjbSKyUlW7eTuOwojII8BrQKSqHnGUjQPuADKB+1V1bhGnACzvlgclzr2jl/HD4r8YPny454M0xkW+nntLi+Ve/1fS3Lus90fUbtGZli1bej5IY1xQVN6tECMSjP86cN99jFy5zdthGOM3RKQRMADYk6usHXAD0B5oACwQkdZlvWKO8R8hVataJ4IxxpSxnj16QK0m3g7DGJdUuDkSjDGmnHsTeBTIPdxsKDBVVVNVdRewHejhjeCMMcYYY4z/s44EY4wpJ0RkCLBfVf8646mGwN5c+/scZQWdY7SIRItIdM6kWsYYY4wxxuTmN3MkiEgcsNvbcThEAEe8HcRZ8Pf4wdrgK/y9DSWNv4mqRpZ2MK4QkQVAvQKeehJ4AhioqsdFJAbopqpHRGQCsERVJzvO8TEwW1W/Kea1LO+WLmuDb/D3Nvh7/OCHubcsWe4tddYG7/P3+KHitqHQvOs3cyT40n8cIhLtz5P9+Hv8YG3wFf7eBn+MX1UvLahcRM4FmgF/OZb4igJWiUgPskcgNMpVPQo44MJrWd4tRdYG3+DvbfD3+KF8tMGTLPeWLmuD9/l7/GBtKIjd2mCMMeWAqq5T1Tqq2lRVm5LdedBFVQ8BM4EbRKSyiDQDWgHLvRiuMcYYY4zxY34zIsEYY0zJqOoGEZkObAQygDG2YoMxxhhjjCkp60gomYneDuAs+Xv8YG3wFf7eBn+Pv1COUQm5918AXvBONKWiPLxX1gbf4O9t8Pf4oXy0oaIoD++VtcH7/D1+sDbk4zeTLRpjjDHGGGOMMcb7bI4EY4wxxhhjjDHGuMw6EowxxhhjjDHGGOMy60gohojEiMg6EVkjItGOsnARmS8i2xw/a3k5xstFZIuIbBeRx3OV/8NRvkFEXi3k2Hztc+f4siAin4hIrIisz1XmU+9BUUSkkYgsEpFNjt/lWEe5P7WhiogsF5G/HG34t6Pcb9oAICKBIrJaRGY59v0q/orE13Nvec+7jlgs93qZ5V5T1iz32jXv2fL33Fte8i54PvdaR4JrLlHVTrnW3XwcWKiqrYCFjn2vEJFAYALwN6AdcKOItBORS4ChQEdVbQ+8XsRpzmwfbh7vaZ8Bl59R5jPvgQsygIdVtS3QCxgjIu3wrzakAv1U9TygE3C5iPTCv9oAMBbYlGvf3+KvaHwy91aQvAuWe32B5V7jDZZ7vecz/Dvvgv/n3vKSd8HTuVdVbStiA2KAiDPKtgD1HY/rA1u8GF9vYG6u/XGObTpwaUna5yh36fgybGdTYL0vvgclaMsMYIC/tgEIAVYBPf2pDUCUI2n2A2b5+99Red98OfdWlLzriMlyr49slnttK6P3y3Kv99+DcpN3HTH7be7117zriNHjuddGJBRPgXkislJERjvK6qrqQQDHzzpeiw4aAntz7e9zlLUGLhSRZSLyq4h0BxCRBiIyO1f9gtpHYcf7EF96D1wmIk2BzsAy/KwNjuFRa4BYYL6q+lsb3gIeBbJylflT/BWNL+feipp3wXfeA7dY7vWqt7Dc608s9/pe7vWV37/b/DX3loO8C2WQe4PO5uAK4gJVPSAidYD5IrLZ2wGdQQooU7Lf21pkDynqDkwXkeaqegC4IlfdfO1T1d+KON7WCy0hEQkFvgEeUNUTIgW9db5LVTOBTiJSE/hORDp4OSSXichgIFZVV4rIxV4Ox7jGl3Ov5V0/YrnXeyz3+iXLvZZ7S4U/515/zrtQdrnXRiQUw5GEUNVY4DugB3BYROoDOH7Gei9C9gGNcu1HAQcc5d9qtuVk90ZFnHlwIe3D1eO9yJfeg2KJSDDZyXSKqn7rKParNuRQ1WPAL2Tfw+cvbbgAGCIiMcBUoJ+ITMZ/4q9wfDz3VtS8C77zHrjEcq/XWe71M5Z7fTL3+srv32XlJff6ad6FMsq91pFQBBGpJiLVcx4DA4H1wExglKPaKLLv/fGWFUArEWkmIpWAG8iO73uy74lBRFoDlYAjuQ8son24cryX+dJ7UCTJ7oL9GNikquNzPeVPbYh09MoiIlWBS4HN+EkbVHWcqkapalOy/438rKo34yfxVzR+kHsrat4F33kPimW51/ss9/oXy70+m3t95ffvEn/Pvf6ed6EMc29BEyfY5pykojnwl2PbADzpKK9N9uQV2xw/w70c5xXAVmBHrhgrAZPJTpKryJ59FKABMLuo9hV1vJfa9xVwEEgnu9f4Dl97D4qJvw/ZQ+/WAmsc2xV+1oaOwGpHG9YDzzjK/aYNudpyMacnnfG7+CvC5g+5t7znXUc8lnu93wbLvbaV5XtkudeueUujDX6de8tT3nXE7bHcK46TGmOMMcYYY4wxxhTLbm0wxhhjjDHGGGOMyzzekeBYPmO1iMxy7IeLyHwR2eb4WcvTMRhjjDHGGGOMMaZ0lMWIhLHAplz7jwMLVbUV2fdmPF4GMRhjjDHGGGOMMaYUeLQjQUSigEHAR7mKhwKTHI8nAVd5MgZjjDHGGGOMMcaUniAPn/8t4FGgeq6yuqp6EEBVD4pIncIOFpHRwGiAatWqdT3nnHM8GKrxtMyMLI7uT6J2w2oEBrnYh5WZBoc3kBFYj6C69T0b4P+3d9/hTZVfHMC/bxctFAqlZbZQRtmjQNlDEFBEBAeIgyWgIlsFBcGBCoqD8ZMlAoKgDAUFWcree5VCqawCLZRCS1tKd3N+fyS5JM1uxk2a83me+zS589w2Ob05ee/7MmamU6dO3SeiYLnjsLegoCAKCwuTOwxmJYtzryrvomJD5CenwquCwX/TjDkU517mKqy55uXcy5yJsbxrt0KCEKIXgCQiOiWE6FyUfRDRYgCLASAyMpJOnjxpuwCZw6Xfz8LKqUcw8Mu2KBPkZ95GD24Ac5vgVkxThK7dat8AGTOTEOKG3DE4QlhYGDjvuj6Lc68q72Lc37g+7D3U2LDe/kEyZgbOvcxVWHPNy7mXORNjedeeLRLaA+gthOgJwBdAGSHEKgB3hRCVVa0RKgNIsmMMrJgIXbRQ7hAYY8zt8IUsY4w5Hude5grs1kcCEU0mohAiCgPwCoDdRDQAwCYAg1WrDQaw0V4xsOLj7qzZuHLlitxhMMaYW7nz8SdIT0/H3bt35Q6FMcacUnx8PLKysmy6zzsff2LT/TFmD44YtaGwrwF0F0JcBtBd9Zwxox5u3YLw8HDs27dP7lAYY8xtpP7+O+rWrYtKlSrJHQpjjDml0NBQ9O7d26b7TP39d5vujzF7cEghgYj2ElEv1eNkIupKROGqnymOiIEVD5cuXZI7BMYYcyuJiYlyh8AYY05t586dRd528+bN+OKLL2wYDWOOYe9RGxhjjDHGGGOM6fHcc88BAD4ePUjmSBizjBy3NjBmsdXNIuQOgTHG3E5tvp2MMcaK7LNp0zBx4kSLt+Pcy1wBFxKYSwjKyJQ7BMYYczvZFy7IHQJjjLmsFcuX47vvvrN4O869zBVwIYG5hO6X/5M7BMYYczvxI0fKHQJjjLkdzr3MFXAhgTHGiiEhhKcQ4owQYrPqeaAQYocQ4rLqZzm5Y2SMMcaKi5MnT8odAmMOxYUExhgrnsYBiNF4PgnALiIKB7BL9ZwxxhhjNtCyZUu5Q2DMobiQwFzCwbAwuUNgzGUIIUIAPAtgicbsPgBWqB6vAPC8g8NiLqjStGlyh8AYY8XGxYsXkZOTY3I9zr3y+euvv/DDDz/IHYZL4EICcwmxFSrIHQJjrmQOgA8AKDTmVSSiOwCg+qn3TSWEeEsIcVIIcfLevXt2D5Q5t3L9X5Y7BMYYKxaSk5PRsGFDvPnmmybX5dwrnxdeeAFjx46VOwyXwIUE5hKGHT8udwiMuQQhRC8ASUR0qijbE9FiIookosjg4GAbR8dcTUy9+nKHwBhjTouIzF43IyMDALDPwNCOCbdvS4/Nyb0PHjzAlStXzD6+OfLz8w3Gx1hhXEhgjLHipT2A3kKIOABrADwphFgF4K4QojIAqH4myRciY4wx5vrMLSQsWrQIcXFxAICCggK967z++usAgPT0dL3LDx06hCFDhkjHbN68OcLDw7F+/XoLozbs448/RufOnXHs2DG8/PLLEELYbN+s+OFCAnNp6enpBhMyY+6IiCYTUQgRhQF4BcBuIhoAYBOAwarVBgPYKFOIjDFW7AghlgkhkoQQ0RrzeLQcBgB455130LlzZwCAQvH4rsOHDx9Kj1NSUpTLDRQnunfvjhUrViAzMxMApMJE3759bRZnVFQUAODevXv4/fffbbZfVjxxIYG5hJsBZaXHv/zyC37++WdkZmYiICAAXl5e2Llzp3zBMeYavgbQXQhxGUB31XPGjPJXXfgyxkxaDqBHoXk8Wk4xZ8mtDWqahYS1a9dKjzW//deXe9XHsmcrAXVs6iIFY8ZwIYG5hKGnH9/uPXjwYAwdOlS61wyAWR3XMOZuiGgvEfVSPU4moq5EFK76mSJ3fMz5hS5aKHcIjLkEItoPoHBe5dFyirnChYSmTZti5MiRRrfRLCQYoi/3OrKQMGbMGLsdw5llZWXJHYJLsWshQQgRKoTYI4SIEUJcEEKMU83npl7MIl9Uqmx0eVxcHObPn++gaBhjzD3cGvGO3CEw5srMGi0HcL0Rc7KysnDo0CG5w5Bd4UJCVFQUFi40XoA1p5BgLPcWpRWEudz9duGmTZtKj0+fPi1jJK7B3i0S8gG8T0T1AbQBMEoI0QDc1ItZqG2pkibXWbRokQMiYYwx95Gxd6/cITDmFlxtxJy33noLHTp0wI0bN+QOxWqzZ8/GnDlzHHY89Yf1tLQ0/PfffzrLiUhv7lUXEMwpRFgbm7u6fPmy9Hj37t0yRuIa7FpIIKI7RHRa9fghgBgAVcFNvVgRGWvOZc8KLWOMMcaYhYrtaDlnz54FYHiEAVfy3nvv4d1337V4u99//x0+Pj4Wb6cuBLRr1w7ffvutNN/ULQvq7aKjo5Gfn2/xcc3h7oUEZhmH9ZEghAgD0AzAMZjZ1MvVmnkxx7p69arWc3tWaBljzN1du3ZN7hAYczU8Wk4xtmbNmiJtp/7i6+LFi0Xavm3btpg0yT6NuflamlnCIYUEIYQ/gPUAxhOR2aVLV2vmxeynW6GiAaCs5Gri5McYY7ZV/1KM9LhHj8Id0isRESZOnKjVJJQxdyOEWA3gCIC6Qoh4IcQw8Gg5xdbWrVuxYcOGIm1r6lv/zMxM+GzZrDNfs+Xt0aNHi3Ts/Px8o61I+Fr6MW7pbJrdCwlCCG8oiwi/EpH6HVdsm3ox+3i2TGmT6/AbnjHGbOvB2nXSY/XY5YVduXIF3333HZ577jlHhcWY0yGiV4moMhF5E1EIES3l0XKKn+joaLz33ntawzZaytSH9eHDh2FyixY6821xnfvaa68hICDA4HK+teGxKVOmIC8vT+4wnJq9R20QAJYCiCGiWRqLuKkXs8i7wQY7OpYQEa5duwYhBDZt2uSAqBhjrHhL/PRTk+s4ogMwxhhzBl27dsXs2bORlFT070BN5cqYmEuYpme0MksLCdOmTcPJkye15v3+++9GtynOhYS9e/eiXr16Zg/xmJeXh99++83OUbk2e7dIaA9gIIAnhRBnVVNPcFMvZgcKhQInTpwAAKxatUrmaBhjrHgxdBHLrcEYY8Xd/v37UVBQIBUBDh48WOR9GSokFO5s8cyZM1rraubawuv+8ccfOvv77LPP0LJlS4tiK86FhHHjxiE2NlbvSBkAkJubqzOPWyQYZ+9RGw4SkSCiJkQUoZq2clMvBiibw44cOdJmSYu/DbO9xMREzJgxgz8oMMZMMtXjOGOMOZv169ebXGfXrl144okn8M0330jXQxkZGUU+prmFhObNm+Ozzz7Tu25UVJTW8zfeeKPI8ZiK7e7duzbZt7MzdPseM8xhozYw93Lw4EHcuXPH6Dr9+vXDwoULdZKhPlPvJJpchz/s2t6AAQMwZcoUnD59Wu5QGGMyGBkfb3Idde7lQgJjzNX07dvX5Drxqjx46dIlm1xrmvPFlzr3btu2DQcPHkTHjh21lhfuMLFw/i1qnPq+3AsPD3eL68C4uDi5Q3A5XnIHwIqnjh07olKlSkaLCepEauziMz4hASEALufkAACWLVtmdH98IWtbjx49AsBNuxhzVxeys+UOgTHmhNz1yxtHnbc69967dw/Dhg0z2BxfrfD1b1Fb6eorJDx8+BAtWrRw+b+5qfibNWumM8+avjDcAbdIsKGvvvpKp1OT4i4mJsZg867EROOtCNRvaA8Pwy/D4cOHAwDWhlUHABw7dszgugqFAv379zd6TFv44YcfIIQwOnxOcaH+2/BtI4y5p321a5tch1skMOa+itP7Xt8HzezsbAwZMsToOnr3Bes+dKtz740bN4xeJxtS1Ou2S5cuFWk7V2fo9zVlyhQHR+JauJBgQx999JHFnZq4kocPH0IIgRUrVkjzGjRogJ49exZpf+ZcfFryYT1eowmuPaum//vf/wC4xz1j6r+Nq1ehGWPW4zzAGAOAuXPn4sKFCwCAhQsX4tatWzJHZBs//PCD9HjLli2Ijo7Gtm3bpHlEZH4hwcR606ZNMzsucz7cF76WXrNmjdH1Td1+XBwZ+7zBX5gVDRcSmI4DBw5g+/btOvNv3rwJAJg5cyaAx0nywIEDWustXbrUrOOYk4ztXejetWsXhBA4c+aMxdtmF2ryu2HDhmJ3f5W6Cs4fIBhjhnB+YMx93LhxA+PHj5eeL1iwAE899ZR8AdnQkSNHpMe9evVC48aNdfJbWlqaWfsihfG8aKgTxaJKS0vDn3/+KT0fNGiQ0fWbN2+uM8+dm/Hv2LFD7hBcEveRYCP2upDq1asX6tSpg1mzZtll//p06tQJgO45qat1+pq7KxQKeHh4oGrVqrh9+7ZZxzHn1gZ19XCzhbcRHD9+3Kz1Nm7cCEA5rI++e6PUbt26hQsXLiA2NhZXrlwBADRp0kTrd/TSSy+hbNmyePDggUWxOjN1kYgrtYy5p3WpqXKHwBhzIuphtjUlJyfb7Xh5eXnw8vJyyC0U+q7l8/PzpcfmFhGAol03aZ5jUXLviy++qPccsrKy4OfnpzVP3+3HFStWtPiYrkT9u4mIiEBGRgZKlSolLStq62p3xy0SbMRehYQtW7Zg9uzZOHfunFX7OXTokMGWAklJSRBC6BQrUgslMWOFhB49eqBkyZI6RQR949oW3t/ff/+N+/fvA1Amae3fpTKpzrl3z+B+9FG3njBk9+7dWLhwodn39jZt2hTPPPOMVhVen8K/M1eVm5ur1SpFoVDg+vXresfYZYwVX5/dNX/EnOJ0rzRjTD99H5CLcg1MRCaH/05MTISPjw+++eYbrflbtmxB9erVkaPqiNtS6enpZg89rtn3liXHK1oh4fFjc3KvuS5evGizfbmy8+fPS49N9ePGzMOFBCup+w1Qf4sPKO9l2r17t9X7nj17tvQ4IiLCqn116NBB6riwsPDwcADA5MmTteaHhYVp3fdWeJQFzSS8Y8cOZGVl6ey7X79+JmObPHkynn/+edy6dQtly5aFh4cHHjx4gFu3bknHWhASYnI/hc2aNUvvmLBCCHTt2hUjR47UuQDWTPx37tzB5cuXAcBkKwNL/4lmZWVJ+5ZTVlYWsrOzUa9ePTz//PPS/I8//hjPPPOM9LxLly6oWbMm3nnnHRmitIwQwq07xxFChAoh9gghYoQQF4QQ41TzA4UQO4QQl1U/y8kdK3N+v1cPkx7zLQyMMX3UXwZZ4quvvoKXl5dOX1hEhDFjxuDIkSOoXLkyAOCXX37RWmfs2LG4efOm1pdXGRkZWLlyJYQQ6N27N1avXq33uJmZmQgICMDEiRMtjtkSCrK8kHD//uOWHZq51xLnzp0z2IeXLa47NVtoqKWmpuLgwYM6t/w6M/5/ZhtcSLDSxx9/DED5jb9a/fr10bVrV6v3/d5772k9r1GjBogIkydPRmxsrNFtT506hVKlSplVcVMncYVCgR49ekjz09LS0LhxY/zvf/9DbGwsoqKiACjffEeOHLG6ubtm5zFxcXFa/QsEBgaiWrVq0gf8OiVKWLz/999/X6vZUlJSkk5hQbOQcOXKFXh6euK1114DAFSpUgV16tQx61ia/0SzsrJMfnM/YMAA1KlTR/akW7JkSVSsWBGxsbHSbR4ADA4z9O+//zoqNKvMmDFD7hDklA/gfSKqD6ANgFFCiAYAJgHYRUThAHapnjNmVENfX7PXtVeLhOTkZAghdD5MMMYcz1YfwJYsWQJAObyh2pUrV/DXX39h3rx5aNeunTTfUG7RjGXkyJFSvwB///23dC1XmPqa99dff7U4ZkvO3dpfkyW5V1NERATq1aunNS8yMhIZGRk613Dz58+HEMLsW3LXrl0Lb29vrWvEBw8eoFy5cujYsSNGjRpVpJgdwdjfjosKRceFBCsZGvrQHuLi4tCjRw98/fXXePbZZw2ul5ubi8jISGRmZmLHjh1anccYU1BQgH/++UdrXlpaGsaNG4eWLVtKw9+cP38e7dq1w6pVq8za74YNGzBv3jytee+//77Wcx8fH73/KGx5YVqxYkV06dJFa97atWsBAGPGjMHZs2cBAKtXr9ZKto8ePTK57woVKkiPS5YsiUaNGgEADh8+jJ07d+qsr/4966vsOpq+kTEMJdX4+HiTt43I5YsvvoCnp6f0/JtvvnHLfw5EdIeITqsePwQQA6AqgD4A1EOurADwvCwBMpeWm5tbpG8fraHul2b+/PkOPS5jTJetvsnXNypUvXr18OKLL5q9rSbNkbuMUbem9fKyvJs4iwoJMvYtpe8222PHjmH06NFa8xYtWgRA+WXo9OnTTe533bp1ACB9sQho94+hvo4GgOvXr8PT01Ma3ePKlSuIiYkx+xxszdjfjvsBKzouJBixZs0ah/VgmpubK3Vgc/ToUYMfoNUfcK9evar1hk1ISJDu3frqq6+k+b///rv0JlZvByibdhUughh7kz18+FBn3ttvv23slCQvvfQSxowZg7tJyqZW165d0+mPwcvLS28njerbJe5b8YG7ffv2UqyFO2HUTICav/Onn35aety7d2+D+x46dCgGDBigM//y5cvo1KkT2rdvj+7du+ssV/+u09LSpItkRyvqvYV9+/a1cSS28cknn2j9M/jwww/ddjxkNSFEGIBmAI4BqEhEdwBlsQFABQPbvCWEOCmEOHnPwr5JWPGTlJ8nPU5MTETVqlURHBysVVB0VB8J7lgYZMzZGBrq0ZwvXTTpKyQY6rfgwoULGDlyJM6ePav1f74oOUF9jNu3b+Pzzz/Xu86NGzcs3m9hmtfeRaGZe22hW7duBpc999xzmDp1qsl96Mv1mo9Pnz4tfTnVtGlTKBQK/PzzzwCUt1E3aNCgSLHbQuFigeZrpyhFJabEhQQDkpKS8Oqrr+L555/Ht99+iw8++EBreUxMDPbt22f0wungwYNmH2/s2LFo1aoVQkJCzP6A3qxZM0yePBkKhQIhISF4+eWXkZeXp3WB9/fff2sNz1i7dm0sXboUFStWROnSpdG4cWOzY7RWm9ZtAEDvbR+XL1/W6tBGTV3IecWKpH748GEsXrzY5Hr6hrwEYLS/i59//tlg8zjN37sQAkuXLpWa3KtvsQgJCUF4eLjZnb5o3tpCRFixYoXWbTX6PHr0CFu2bNGZry+hq//BGntd3717t8gX9DExMfjxxx+15hGRxdXgH374QavzIEO3khw4cABCCJw8edLyYF2cEMIfwHoA44nI7GFPiGgxEUUSUWRwcLD9AmQuobOq+Kymbo1Qv359OcJhjNlRamoqTp06ZfB/vLFRufz9/S06lr5CgjELFy5Es2bN8PXXX1t0HEB528Pff/8NQLtY8emnn+pd39DtyZZc++i7prVE4dzrDPSNtlb4luG33noLwOMvIAv/zvT135CTk4NFixZh5cqVdisYcyHaTohIlglADwCxAK4AmGRq/RYtWtDKlSspMjKSiIhOnTpFqampZEhubq7OvN27d9PNmzfp/v37WvMVCgUpFAqteSNGjCAAWtPzzz9Pr7zyCikUCmne8OHDddbTnIiIjh07Rnfu3NE5Zm5urhSLsX2Ymj799FOrtnfUFOhfkea9vYsC/SuavU31AEH0aRn6OKy87PHbalq5cqXe+evXr6ekpCTasGED7d69mzZu3EjR0dH01Vdf0axZs4iI6Pr169L6VapUkR6fPXuWJkyYQACoZMmS9PDhQ+l1FhAQQADowoULWq9BfTH06tWLFAoFtWnTxug5BAcHU1hYGJ05c0baX15eHiUnJ2sdIzMzk8aNGye9V0uWLEkAqKCggIiIzp07R02aNCEAlJOTY/D9fODAAfrtt9/o7Nmz1KpVKymO3bt3G42zcePG0uPY2FiD+09NTZXywBtvvEF79+6lnJwcmjt3LuXl5emsD+AkyZQ7zZkAeAP4B8B7GvNiAVRWPa4MINbUflq0aGHwd8ZcR9q9TJr39i5Ku5dp3gYpcUSfliFKiaNR5YMMvr/UoqKiCAA1atTILvEfPXqUAFCrVq3ssn/mOpw999pqkiP3fvzxx3rf35q2bdtm9H+uJcLDwwkARUdHU+/evWnhwoVmXUP17dtXenz58mVSKBR0+fJl6ty5s866N27coIKCAq34/vvvP6P7/+uvv8jf31/vsq5du5p9rWfNNW/1AGE099pqatSokUXr9+nThwDQn3/+SUSk9bst/DpQP37vvffo3LlzBl8ne/bsoVq1aknLdu/ebeEr1zz37t3TiuHy5cvSMlPn7e6M5V25LnI9AVwFUBOAD4BzABoY26ZFixYG/7gKhYKioqLon3/+of/++49mzpwpLd+3bx9duXJF68M/ABoyZIj0C5o0aRIBoGPHjtGJEycoPT3d6Avq999/N/tNV6ZMGa3nb775JuXn50sfntxpsiapXm5eW/b4XW364IMPqFmzZtLzqVOn0n///Uc9e/akL774wuB2pUqVsvhY1atXlx5PmjSJzp8/T7t376aePXsSAAoKCqLvv/9eWqdixYp05swZrX0MHjyYTp48SZs2baJDhw7RH3/8QXPmzKE5c+bY/Hdz//59ysjIoOzsbFq0aBEBoLJly9LIkSP1rj9kyBAaO3Ys/fvvvyaTqtwTlGOm/gJgTqH530JVtIWyo8VvTO2LCwnFgzWFhIt16xl8H6k5qpDQsmVLu+yfuQ5nzr22nOTIvR4eHnrf35q2bt1q9H/rjz/+aPQYsbGx9ODBAyIiqlu3LgGgQYMGWfT/u2bNmtLjzZs304IFC4yu36BBA61ziomJMXmMolwHFZ6sLSQYy722mjR/N+ZMvXv3JgD066+/0rRp0wyuN378eOlx//79Df7vICKdZZs2bbL+xayHOnb19PHHHxuMofB0+PBhOn78uF3iMld6ejqtWLGCDhw4oDV/yZIl0mfanJwcWrFihc6X49aCExYS2gL4R+P5ZACTjW3j6elp9zcUT/aduJDAUzGanPZiFkAHVYxRAM6qpp4AykM5WsNl1c9AU/viQkLxUNRCQvadWLMKCepvmxo3bmyX+NWtkLiQwJw599pykiP3Gnp/azJVSDC0neYxGjRoQERE9eopc4sl3/Lrm1577TWz1yUiio6ONrmeuvWkNZMrFBLUfwNLp+DgYLPX7dGjh9HXSOFlH3/8MTVv3pzWrl1rg1f1Y5otVNVTSkqKzhfNpl4/cjhw4IDJ3x8RSe+FdevW2fT4MJJ35eojoSoAzd5a4lXztGh2+mWoAxbGGGOPEdFBIhJE1ISIIlTTViJKJqKuRBSu+pkid6zMuX362WdmrVfUHq8XLFggdQBcWH5+Pjw8PLBo0SKdTnIZczfr16+HEAK//fab1vx//vkHCQkJDonh5MmT6Nmzp9X7UfdvpO7Q0NpOWi35fLBu3TqprwRjlJ+dir+ifraypCNmS/++X3zxBU6fPo1XXnnF6HrXr1+3aL+G+tKy5P+XZh8h06dPx6uvvmpRDEVlaPS9wv1TqPNDSorjLu/kKiToe1XpvGtJo9OvwMBAuwRSpkwZu+yX2dY78fp7CWaMMWYfly7FoG+c4Ys19RBg6otuSy4Ys7OzMWrUKHTs2FHv8tzcXBARxo8fb37AjBVDmzZtkkZLGjVqlNayHj16IDIy0upj6PtQ9ssvv0AIASEE1q5di5YtW1p9HLWUlBRpVC59Q2RbQrPjZVP69++PyZMnm1zPGQoJxnKvrTjiS1p9/xeSk5OxbNkynD9/3ui2CoVC58MyAHTp0gU1a9ZEz549sW/fPrPiyMvTHQUjNTXVot9B1apVkZKSgri4OEydOhVr1qzBnTt3tNY5fvy4xSOYmFK4w3+1VatWSY/Vo2MA9h9BSZNchYR4AKEaz0MAGO4KFkCNGjV0hiYZP3681LRiz549OHv2LIiUPcC3aNEC77//Pv7++2+cOHFCayQDAJg6dSoUCgXS0tKQkpKCxMREKBQKEJHeoQ4BoHTp0gBg8TioZ8+elYaYmT59us6Lvnnz5hbtjzF99BXbatSoIT2uVq0aHj16hN27dxsd0tJQwjJHzZo1kZmZidzcXEycOBH9+vWTYtMcIWTq1Kk4ePAghg8fLs3z8fGRnt+6dUt6L2/evLnI8Rgyb948KBQKHDlyBGvWrJHm//vvv5gwYYLWunfu3JHyjEKhwJ9//mnzeBhzhNFjRhtdXlBQgFGjRiHOzG8KmzZtCuDxSA6WUH8L9ODBA6PrFXWYWsZc2alTp/DPP//gwYMH+Oeff6T5qamp0hCIGzZsAKAcltXY+4iIUFBQgFWrVuHcuXN618nXM8T24MGDpcemvh3WdObMGQDK/+M//fSTNF9zyPEnn3zS7P2ZYurDaFFkZ2fbfJ/OqCi521KFh5oHgKCgIAwbNgxNmjQxuu17772HUqVKSa0J1P839u7dCwDYtm0bOnfurLXNwIED9Y6Yce3aNZ15TZs21Xqdm+PmzZta77cqVapg6NChOHnyJFJTU9G6dWu8/vrrFu3TUurfg+b/x6FDh0qPHzx4gDt37mDo0KFmjQqXl5eHZcuWoaCgADdv3tT7NzPI0D0P9pwAeAG4BqAGHne22NDYNi1atKDExETp3o/09HSL7/GYMWMGBQYG0o0bN0yue/bsWa37Ufbt20d5eXn06NEjIiJKTEw0676sTz75RO/+Hz16ROvWrZM6xDC1H2PTwIEDCVCOIDF69GiLtr19+7b0OCQkxCb3XBmaXKmPhA4dOth8n9HR0fT3338bXH7mzBnq3bs3zZ07VxqB4ebNm/TSSy8RAJo2bRolJCTQqVOnpNe/etsDBw7Q9evX6euvv5bmpaSkUG5urvT86tWr0uvv/v37emO4du2aRa/H9evXa40QYcquXbukY6ht376d1qxZY3Q7AOTp6UmnTp3SOn7Pnj3pypUrtGfPHqNxdunShU6fPm1w/5mZmRQfHy89nzdvHgGgd999V+95ge/TZS5E3UdCoH9Fo+v5+PgQAHq2fWOiT8tQ704RJu/T3bt3r/S4adOmZseUkZFBAMjPz0/v8qSkJJ1jcR8JzF1yr/o1r+6QsPDUrl07nXnqzr3V16lq5cqV01ovJyeHVq1aRePGjaPo6GgiMq8DQnOniRMnanWufOXKFUpKSqL27dvb/LrKmSdX6CPBmSchBHl5eREASkxMpHfeeYcA0Ny5c3XWXbp0KfXv35/+/PNPad7mzZul94Ch0SWKMk2bNo2OHTumd5nm/63XX3+dJkyYoDePnT17lo4cOUKPHj2i/Px8mjt3LmVmKvswys/Pp5ycHJo/fz7169dP+h1oTjNmzNAaWMDY9Pzzz+scX/0Z4uDBg7Ro0SKp082qVatK22VkZNCWLVvUnyucq7NFVZLsCeA/KEdvmGJqfTkuaE+dOkXXr183uo66N2l90/Hjx6Vh7kz5888/afz48fTzzz/TkCFDCFAOxVd4n5q9yq9du5bOnz9PP/30EwGgoUOHUm5uLp0+fVprG31DVKp75yUiad7UqVMNDnlji8mVCgmHDh2y6f6+//57rb/32LFjtZZHRUUV6TV68+ZNWr58udaH3VOnTtHNmzel5ykpKXqHStV34aAuspk6n3///dfocIq2FhsbS/fu3dOJTZO+OHNycmjz5s1SscNW4CYXs1xIKB7MLSSo3ze9OjQx+2JWc1QVSwoJDx8+JEDZqZk+zz77rM6x3KmQsGHDBkpPT6fr16+b9eWHu3DV3AsLhzy39ppDPWzxP//8Y3JdSzrO48n8iQsJzjFNmjSJ1q5d65BjVapUSWfeqlWrqF69euTn52d023fffdemBT3N6Y8//iAiokOHDtHLL79clH04XyHB0slZL2g1v/EtPGmOUVoU+obEISI6ceKEVoFjy5YtBIA+//xzad6+ffsIgDRcieY+vvzyS8rIyJDiU8+fPHmyyRe6NZM6qY58c7zZ29i6kHDy5Enav3+/3mUzZswgALRnzx4qKCjQGbrT2N/Z1Do5OTlaf1v1OMaNGzemtLQ0q14nRZWVlaX39UVEJs9HTuoYBgwYoDV/3rx51LZtW4qPj6fc3Fydb2VsHINLXsxaOjlr3nVXBQUFtHr1arML1GqWFhKe69jU7IvZZcuWSY8jIiLMjkk9zLKhQkLlypV1juUuhYSLFy86Vc51Jq6Ye1GEIc/tdR3Gk+MmLiTwVIwmpxu1odjw8vIyuMzWnV1s27YNABAZGYmwsDBp/jPPPIO///5bqwOZTp06gYikznEOHjwoLRs/fjxKlSqF2rVrAwDefPNNAMr7Y4va+7YlZsyYjqVLl1q0zS8pD6w+brNmzdCiRQvUqVNH7/JJkyYhPj4enTt3hoeHB9LS0kBE6NSpk9H91q5dG9u2bcO2bduk+5UGDBggdSQE6L5OwsPDQUSIioqSrcPPEiVKaD339/eXHlevXh3lypXTu12PHj3sGpcpR44cwfHjx7Fy5Uqt+aNGjcLhw4dRtWpVeHt7o2TJkjJFyJh9LFq0CK+++qrWfceakpOTpf8T5vr1118hhEBaWpre5fNN3EOr7jsIsOx/nvp/jaFt9HWApfqAVewZ6qeJuaxWAK4Q0TUiygWwBkAfmWNiTs5U7mXMGXAhwUqaF0F79uwBAFSqVAkAEBAQYNNjGfoAJ4RAr169jBY12rdvLz0uVaqU1rLw8HAAygu3devWSfOHDBmCjz76SO/+OnfujPnz55uMWfP3U7FiReU8CK1OQdQGDBig9VzzAvWXB0UbysTT01P6oK6OxdfXV2ud0NBQEBGEEKhaVWcUUr3z1NS9Dffo0QM9evSAj48PEhISsHTpUvj6+qJy5coAAA8P53urCSG0OmPUvEi/evWqweF9tmzZYvfYjGnTpo1Ne49mTG5JSUmoWrUqoqOjja6n7jTJUOdJQUFB6NmzJ27fvo3vvvvOrMLw999/DwBawzBq5u35ycYvZr29vU0eQx91522PHj3S27FZUXoT/+abbwwWil2JuxRM3IjFQ547LDLmtEzlXsacgfN9unFhnTt3BhEhLi4O0dHRCAoKsmp/mhcTxnrZN9e2bdtw8qTu/ydPT08Aygs3zeN06dIF06dPx82bN3H79m0EBwdLy/bs2QM/Pz+Tx1RfyNatWxdHjx7Vu86xY8dw+fJlrXlfffUVevXqJT1fU726yWPpM2zYMOnDvvriuPA38eoWGYbo6/0VUI6C0LVrV535VapUgY+PDwDluTlzL//Xrl2Tfj+arzdPT0/pdVGYMxZFGHNlmzZtwu3bt9G4cWOt1mOFqd97RIR33nkHQggcP34cgPa43hMmTMDEiROlXt3fn/C+1n5OnjwpDVmlLgRoDo2l2Uhgb61aRmPXzBuWtEjYvn279Fhfr9lFKSR8+OGHOv9LXBEXEoodi4c8t/aAFy5cQGpqKv744w9rd8VkYir3MvPMnDlT1uNPmjTJrPUMtTS0hb///htHjhyxS6GdPxHYiOa35yVKlEDDhg2t3qfmxcTGjRut3l+PHj3QokULnfmahQQAUsFA/a1vaGgoKleujKSkJK3t+vbti86dO+PFF1/EkiVLUKlSJZw+fVpn/5mZmdJ44/q0atUKtWvXlmLbt28fJk2ahCVLlmDt2rUAgCAjrS0MOXfuHObPny/dwqEej9zHxwelS5fGjz/+iNzcXJ1hRQvr06cP1q9frzO/cMsGfUJDQ/H8889bHLsjtWnTBoB5F6///vuvvcNhzGKbN2/Gc889J3cYRab53tNsFVaY+oO6QqHAokWLAACtW7fW2Yf6NgX1+Nsb1m+QlhUUFKBly5aoUqUKAEOFhMefeyp4md/i4PTp0zh27BhSUlK0hse6cOECPv30U4M5pvA5L1myBKmpqWYdc+zYsQgODta6lcwVJCYmWnQbypAhQ/QO0cdcgsVDnqsNGjRI78V/nz6G74zo0qULGjRogICAALz00kvo2rUrRowYIS3//vvvQUS4evUqSpcurXVbrD0sX74cRGTxbVfuzpLcWxxptqQ2x+3bt/H7779rzYuOjsYHH3xg8H9PUW+BvaEaItkcX331FZYtWyYNdXnx4kUAQL169bB//36pr4Hhw4dj1apVWtcyL774YpHi0/TFF1+gV69eaNOmDXbt2oVZs2ahT58+2LhxI/Ly8kBE+Pjjj3W2Uw+rOW3aNOMHkLsTGnMnZ+7068iRI1pDx9nKiBEjpI4u7CkxMZHq1q1LV65cMbmuOfG8+eabetdTd/iVdi9T774UCoXuEH0pcWZ3ttikSROt57a0YcMGab/Dhg2j2bNnaw2n6Mry8/MJAM2aNUtnWeHfMVOCC3b4VZTJmfOuJvXr09JOCI2ZMGECPfHEEzRv3jxpxBB7WbRokXQOo0eP1ll+/PhxatmypbRO4aF6iYju3bsnPe/ZsycBoOXLl9O///6r1enX66+/Lq2XmppKnTt3JgC0e/duab4lHX517drV4LI///yT9u7dK/UKrzlsc+F1Dx06RHFxcURE1Lx5c4P7PHbsmNbvRj1fc0iwxYsX2/GvZRu1ayv/p+kbXvbw4cNmnbs7csXciyIMea753s7MzJReA5MmTSIAdP36dfrll1+k+e+//z4VFBTQxo0bDQ7F3LFjR4P/69VDTttyOnPmDP3333/SMRQKhc2P4cwTd7Zo3XTgwAGqUaMGAaDy5ctL84l0O+P9999/NXMEAaBNmzYVzh060yeffEJvvfWWRXGNGDGCiIg+/vhjWrt2Le3YsUNaVrp0aa11PT099b4XDx48KA33aMilS5coPz+fCgoKqEKFCnpj6dSpk975wcHBlJ+fT1lZWUaPoRYbG6u1feXKlen69es0ceJE9WcEHrXBFaWlpWm9cZwBAPLy8jK53ooVK+iXX37RmmeqkKCXqpCwpWGoyTd306ZNtZ7bknqUhfnz59v0w4qzK/w7ZkrGkmpxmlwl76pfn6b+MRdlnwDoqaeeMrru+fPnqWPHjnTv3j3av3+/xcfSLCS8/PLLRmPRNxER3b17V3quWUgADF/QtmzZkrp3704AaPv27dJ8zYvZ36uHWX1BqB5W2FghQT09evTI6L7q1q2r9UFJPb/wcJGaQ+A6I3Wc+fn5WvPv3r1r8EPdwYMHZYrWebhq7oWFQ57Xq1ePsrOziejx6GDe3t5av4vffvuNAFD//v3N+t2p19+1a5fOsvj4eJ3XW//+/aXHy5Yto5o1a5r1fv/oo4+kEcMKs/XQ2s48WVtIsEXudeUpLi6Oxo8fT4ByCPXq1asToPx/9+KLLxIA2r9/v86oaOrtC9N3jE8//ZT27NljUVxz587V2feff/5J27dvpwcPHkjr7du3TyqOW6tq1apaMRw5coQ+/fRTg/8vLT1ucnIyAaCqVavSlClT6M6dO1rLwYUE12XoDSGXM2fOUEJCQpG2taaQUD1AmHxzb9y4Ueu5rWVkZBis9BdXhX/HTMlYUi1OkzPn3RUrVlCHDh2oWrVq5OHhQYDyG3Zb0XzdN2nShGbMmEH16tUzum5gYCABoBs3bmgtv3LlitHcsXDhQqPvM1O5j4jo9u3b0vNnnnmGANOFBM3p77//lh5rXsza8sLwwYMHlJeXRwUFBQbXadOmjcn9zJ49mxQKhVbMHTp0MDtfLV++nLZu3aozPy8vj2JiYgxuZyvqIZsB3aGBmzVrZvC89+zZY/fYiio3N5eef/55Onv2rF2P4665d/ny5TofDtTDhK5cudLs35+xDxgjR47Uer2tX79e672k2drU2GQqD2dmZtJ3331n09zijJO1hQS543fEtGXLFvr555915rdu3ZqIiKKioggAXb16lZKSkqQCVUZGBh0+fFjv60vd2quwn376Sec4n332mUUtZX799VeTXyb++uuvNGPGDKPrWErdMkM9qemLPTc3t0jHSE9PN3hu4OEfma1ERERI99Y60niNjh4NiYiIwBNPPAEAOvdJ2UKpUqVsPqSnq/juu++k/ioYs7fk5GTExMQYXJ6Tk4PBgwfj4MGDuHnzptSpa2JiIpT/82wrKioKH330ES5duqSz7Nq1a9LjlBTl6DLVq1eX+rWJiopC7dq18c0332j1GwAAx48fx5dffqkT8759+yyK7+rVq1r3H6t/H5b8Lgx1CvtZxUoWxWLMe++9B29vb7z++usG1zHUKa+mnTt3YuXKlVr3khrrnPHWrVtaz4cMGYKePXuioKAAGRkZAID4+HgMGjQI9evXx/Xr103GUFQPHz7Es88+Kz0/ceKEVkeZ//33n8FtnbmPhPPnz+Ovv/5CRESEzuucWW/w4MGoXqjT6fr16+PRo0c6I14ZU3gfmvTli+vXr+Pw4cMAlPd6m8NQR81qfn5+UofUjtS9e3eHH9Matsy9tqK+xjaHusN5zXxXWM+ePTFkyBC98wGgcePGICLUrFkTwcHBUt9tpUqVQtu2bfXu88yZM1Jnwpr0Xb8LISy6rn/ttddMdjj+2muv2bzfEUOdpgohsGbNGq2+2Io6klLp0qWL1Jk6FxKYS+ilGsJRU7du3bSee3p6SgmhfPnyDonLXbz//vt4+eWX5Q6DuYmmTZuiQYMGWLZsGVatWqWzXN9wgYCy86IFCxYU6Zh//fWXRZ3ajh8/HuHh4ahloGft559/Hunp6Rg3bhwAZc/NgYGBWhc4rVu3xscff6wzTKO6aBcXF4fFixebjKV27doYNmyY9Pyff/4BALzxxhtmn8+yZcv0zn+5bFmz92HKzz//DABYs2aNVfvZsmUL9u/frzVP34dsImUHVtWqVZM+DGkaM2YMSpcujfz8fISGhmL16tUAYNbvvKi+/fZbrecdOnTQ6jjv0aNHBrfV7BDz+PHjuH37cX9958+fN7qtrXTv3h2tWrVCRkaG1EnmgwcPkJCQIK2jHt45OzsbH374oVSsYbZX1M7izCGEQFhYmPSBrXz58kYLvGrGhiJXe/LJJ62OT0095HrTpk3x8OFDg+tZ8oGxX79+VsdlLVvmXrXp06dbtb2+Tvn0SU1NlYoBffv2tegYpUqVwpQpUyyOTc3f3196TZjiKl8ONm/eHA8fPkRmZqZOwa9///7o0KEDAOUQyI7GhQQmmzNnzki9lxbF5MmTtap+moUEe3wryZi7ysnJQWBgoF1a+uij/lAybNgwDBw4UPqmPyMjA3FxcUZ76B89ejRu3bqFNWvWaH3QMubSpUt44YUXpKr+3bt3Da4rhEBgYCDmzp2LK1euGN1vjRo1sHfvXq15t2/fRkpKitYFzPnz57XWWbhwIWrWrIkaNWrg7bffNusc3M3SpUu1np84cULvOur1Lly4AEA5wofawoULAUBnhIivv/5aapVw7tw56QN8YmIicnJyrIo7NzdXZ96RI0cAKFviGJOXl4fXXnsN33//PVq3bo1GjRoBUL4/mzRpYlGxd+7cuWjcuLEFkStHA9m5cydOnDiB0qVLo3///jhz5gzCwsK0ho7+66+/MHnyZNSoUQPffPMNvv76a7P2f+fOHSQkJKBJkyZSj+HMcQpfN+n7QqZevXom92OqRQIAm4xsBii/IVcPaz5ixAj4+/sbXNeS4oWx0XOKkx07dli0ft26dU2us3LlSgQEBGDx4sU4e/YshgwZYrKYqDkyya+//mrWa8hS+ooG5nwDX7duXWl0Mzn5+/vDz89P77IxY8bgq6++wtixYx0cFRcSnN7SpUuL/A2bs4uIiED9+vWLtG14eDiefPJJzJgxQ5rHhQTbM2eIS1b8JSYm4sGDB3j55Zf1frNb+IN979690alTJ6xduxYKhUL6trigoMBoE3QAOh+8gcdDID311FOoUaOGyYu8sWPH4tVXX0WvXr2Mrgcoh4cqnIdMffAxt+m2ugCiKTIyEl26dNGa9+OPP+qsZ8/m9e7izTfflB4fP34cAPQOExqs59a5CRMmYObMmYiIiMCECRNw7do1VK5cGb6+vmjdujXy8vJw4cIFhIeH4/79+9J2a9aswZ49ewzGZOj1n5uba3K4s4yMDKxevRoTJkwAoHwdKhQK6f23detWCCHwySef4MqVK/jll19AREhISMDZs2e19jV+/HhER0djxowZmDNnjt7j3b59G1988QWICElJSXqHIUxLS0N6errO/K+//hqJiYkADLcgIiLExcVJr/UqVaogJCQE58+f17m9Z9WqVdKwpsz+NmzYgE6dOhVp26J8CPz666+lobr1EULgiy++kJ6fPXsWb775Jv744w9UrVoVubm5UtFVXVgorFq1aggNDdW7TJ8NGzaYXsnFdevWDXfu3DF4m0BhISEhuHfvHk6dOmVy3RIlSqBp06YAlK0M1P7++2+ddQ8cOIA9e/aAiIwObWpr6lu1ly9fbnAdDw8P7N692+gXDHLz8fHBpEmTUKJECccf3FDnCc42OXOnX8w8hTtbNIuqs8Xmgd5anYmEh4dLq6jnJScnS0OR7dixww5n4H7i4+Pp6NGjcofhdODCHX4B6AEgFsAVAJOMrdusWTM6e/YstWvXTuv9l5eXR4mJifTyyy9LwzK1bt3aaCdFeXl50uMLFy7QsWPHaNmyZXT16lVas2YNpaSkqH+3eidDwx/pm4KCgggAVapUiV566SWaMmUKvfzyywQoRw5Yv349NW7cWGcIKQB06tQpWTufssdkaadfmh1+BXt6yR6/raaVK1fabF/qXsPV0/Lly7U6zaxWrRoBoLVr19JXX31FAwYMoHPnzhnc3xNPPFGkOEwNXabZ0z4RafWEXnjy9fW1y+99zJgx9O6770pDjQKgHj16SJ2iGZqio6OJiAqPFuCyudeSSY5r3tOnTxOgHHbPGFN/b3NpbrN582ZKSkoyuE91B7bmHkP9P0Bz+u233yglJYWuXbtm9jlY87q3trNFe+TeL7/8Uu95qnvtt+Rv+8ILL+hdx1DnnzNnziQ/Pz8iItq8eTPt3bvX7NeKLSxdulQrzvXr1+sdAajw1KBBA4fG6YyM5V3TNzIx5gTCS5TAaTy+P1T5utbm6emJvn37YteuXUYr28x8VatWRdWqVeUOg9mIEMITwHwA3QHEAzghhNhERHrvMTpz5gwiIiJ05uvrzOfYsWNGj625TVGatSYlJZm9rvob4sTERKxfv15rWRk9/a1oatGihcWxFWcNfX2x91HxuMd94MCBNttX4W8rC3cYdvPmTQDK+1fV9PX3oWZpB5tqpvpz0OwM1NT9wIZaDljrhx9+0Jm3fft2k9upb91gjtGsWTO911aWKErT6kuXLultMj9mzBj4+fmhcuXKqFatmkX71NcEXAiBcuXKoVy5cka3dZb75h2ZewMDAy3eZsWKFRg2bJhOyz9Dr6EPPvgAH3zwAQDjHTDaS+G/q7qloylF6YDQndjttyOE+FYIcUkIESWE+FMIUVZj2WQhxBUhRKwQ4ml7xcCKjy8rm+44xdPTE2+//TYyMjIQFhZm/6AYcz2tAFwhomtElAtgDYA+MsfEnNiCkBC5Q2CMuYi5c+eave7kyZPRrl07g/fdKxQKzJw5E+PHj9eab05HiNYURApva2lngbZij9xrbaFIU+nSpbUKAup+Uopb/ybOUlhyVvYss+wA0IiImgD4D8BkABBCNADwCoCGUDaxXaD6lowxs2kmQ/X9eOo+EjTvxWKMaakKQHMsvHjVPIkQ4i0hxEkhhP4bTRljTAb2HKGAmW/MmDF651vaQeGMGTNw6NAhg8sLj2YDKIdP/e2330zuu/AHZm9vb52+acxBRA7rZNgWRo4c6fBjqlt/dOzYEURkUT8UjlTUggAXEoyzWyGBiP4lIvV4TEcBqEtrfQCsIaIcIroO5X26rewVByv+1OPK2qOXV8aKGX3/EbWuuIhoMRFFElFks2bNkJSUhHnz5mltUKFCBeTl5eGNN97Q6vBUn2rVqmHlypVQKBSYPn06Spcujc8//xypqalIT0/HgwcP8L///Q9Vq1bV29GitQ4ePGjWhaca3xbFimLMmDE4ffo0KlSooHd5165dsWnTJkydOlXv8sLvMVvz9/fH/fv3kZycrLdzSUA5NGXr1q1tfmx9nU96eHiY7EX/hx9+ABFJOUY98gaT1+zZs3XmffTRRzYZMnHlypVSJ4/6Cgn+/v5mDS/ZqpX2x4rc3FxUrFjRrBiMtWj96quvzNqHXObPn4+dO3caXG7LFglqiYmJGDVqlCxFjKJSj9BkDi4kmGCo8wRbTgD+BjBA9Xie+rHq+VIAfQ1s9xaAkwBOVqtWzRb9RTAZWdPZ4sjQMlqdn9SsWfPxKikpDu+0hbk3uGiHXwDaAvhH4/lkAJMNra/Z4VdSUhI9fPhQ7+/j2rVrNHPmTHrxxRfpqaeeooEDB9Jzzz1HnTp1omvXrln0u92+fbtOZ0fTpk2jW7duERHR1q1bTXYI1aBBA2rVqhUNGTJE2m9ycrIUS3R0NAGg3bt30/PPPy9t5+XlRURElSpVsnknV3JO1nS22C8gQPb4bTVNmDDB6n2sX7+eDh8+TKdPn6bTp09TQkKC1uu3X79+BIDu37+v9/VtqEM5IqKTJ09aFEtYWBj9/PPP9OOPP9Knn35Kc+bM0VoeFBREO3fupAcPHlBGRoZWHJrrTZw4UWvZn3/+SQCod+/eJmMgIho9erTJdXJycmj9+vUEgP777z8iIlIoFDR16lT6+++/H79WAwOlxydPniQiovz8fOn3CRfNvZZOztzBeEFBgc7f+KOPPrLZ/m/evEmenp50+vTpIu8jIyODjh8/rvUa1KSeP3bsWJ33d3x8vMH1Dxw4YNZ708PDgzq06mJVZ4uW5t6WLVsSEdGtW7cMrvP555/rvDfV3nnnHbPe765q+fLl0nmMHDlSZ7mhc46IiJAhWudiLO9ae1G6E0C0nqmPxjpTAPwJQKiez4duIeElU8dy5qTKzGNNIaF6gNB6Y9eqVct+gTJmgqtezALwAnANQA0APgDOAWhoaH258q7me33MmDGUk5NjdJ3CU3JystnH0rzo6tChAxER9ezZ0+C+Z8yYQUePHjXrwq5bt27SYy8vL7p586ZUuPjwww9py5Yt9M8//1h0sah5cWPuutYUEooSm6Fp6NChNt2fudOsWbPozJkzpFAotOarP/S//fbbOttcuXKFiIi++uor2rFjByUmJlJWVpbJ19OjR4/o+PHjBpdnZGTojdGc17Xm9PDhQ60exzWlpKTQiRMnjMY5depU2rVrl9F11L3bHz58mEaNGqV1/Lt370qjKhCR3tFOevXqJY3GYsrMmTPp33//lY47duxYys/P11kPLpp7LZ2c+Zq38PsIsG0hwZYOHjyot5itjrvwuRiiXm5sZAnNKSwsjAa/OtyqQoIlOW727Nla+SA3N5cuXrxIzz33nLROtWrV6MaNGwbPt/B73FieckX//fefdB6jRo3SWZ6fn6/3nJs1ayZDtM7FWN616tYGIupGRI30TBsBQAgxGEAvAK+rAgGU9+Rq3kATAuC2NXGw4m9nrVpaz031vM4Y00XK281GA/gHQAyAdUTkdO2FU1NTpcf/+9//4OPjY9Z2rVu3RkpKikU9UIeEhOCvv/4CAKnJ7OrVq3XWU99C1bJlS7Ru3RoKhQITJkwwuu8tW7Zg0KBBAIBDhw4hNDQUq1atwokTJ/D111+jZ8+eeOqpp5Cenq613fnz503G/cQTT5hcRx9Lmx9frFuvSMext59++snkOlu3bsWSJUvw7rvvIiIiAkIIbNu2TVpeqZKyE98GDRrg2rVrWL9+PYYOHYq7d++ilup/zqRJk9CtWzdUrFgRvr6+Jo9ZsmRJ6bWijzV9+KhHimjevDn8/f0NNrktV64cIiMjje7riy++MHlrQY0aNUBEaNu2LebOnYvU1FR89NFHAJS3N2mOvtK8eXOd7d9//32TPeSrffDBB+jevbt03Llz5/Ltik7KlZp6t2/fHjVq1NC7rG3bthafi6Hbggp7/JGn6CzJvUIIrXPx9vZG/fr1sWnTJmnejRs3UK1aNbzyyit696HvVpLiJDw8HKdPnwYAvb8DQ/nGlV7vcrDnqA09AHwIoDcRZWos2gTgFSFECSFEDQDhAI7bKw5WPJUtW1buEBhzSUS0lYjqEFEtIpoudzz6BAQEmFznyJEjWs9LliyJjRs3mv3BRZO6syh1IUFfoVLd0Zv6YkMIgW+//RZEJN3T+9JLL6F+/fpo1aoVxo4dCx8fHyxZsgQ7duyQ7tktVaqUzoe8wsNL+fv7Y/78+fDx8ZGGyyrMnPuE9TG3KGOtgwcPSh/U1fLz8/Wua+mQmwMGDDDrHte2bdti2LBhWvN69OghPX766ael9WrUqIEXX3wRS5cuNdjPga2Eh4cXabsXXngB//vf/7Bx40YbR2Sap6cnAgICMH36dIMfkkaPHg0A+P3330FExa73dmaYoTzlrAoKCnDw4EGz1587dy7OnDlj0TGc5QPoL7/8gnHjxknPDb1/3aFwpx7itEOHDmZv4yx/R2dVtCsR88wDUALADtUf4SgRjSCiC0KIdQAuAsgHMIqICuwYByuG3nzzTblDYIzZ0ZkzZ4z20t6mTRut1gd37twpckul+vXrAwAGDx6sd3nbtm3x008/4dNPP0X79u11lm/fvh0PHz7U+wHU29sb3bp1M3r8woUEIQRGjhwpdV61f/9+HD16VGudwgWBl19+2axe0729vU2uYwsVK1bUOa+CAuW/+q+++gpPP/209C32008/jbp165rdKeaAAQN05rVv316rB/gjR46YLDg/++yzyMzM1DvmvD316NEDly9fLtK2hnrMdwZfffUVqlWrZvb47Kx4GD16tFnFX2dSODeZMnbsWOnxwYMHUb58een/hiG2aJVgSuvWrXHs2DGj6wwcOBADBw40ua/PP/8cBQUFWLhwoa3CKxbcocBiDXuO2lCbiEKJKEI1jdBYNl31bVhdItpmbD+MAUDJNm2kxwqFAq+++qqM0TDG7C0iIgJ16tQxuk65cuWk5ubW/LMPDQ2FQqHQ+wEVAIYNG4bw8HD89ttver/R9/Pzs+pbbM2L2g4dOugMnxUUFKSzTeEeyM3tMdvSC+g9GRkWra/m5eVlsJBQrVo1NGvWTGvZ8uXLkZKSYta+FQqFzt9b3SzeHLGxsdIIIY4uIgCQXtfqb7q+/fZbh8dgD/7+/pg4caLFrzHGXEn79u1Rr579b/kyJ/eqR1mxpGhhaN1y5cphwYIFZu+HMcCOhQTGbKnKl19Kj7mZEWOsMGs/vBjLK/a+d1TzQ/HChQt1zmX58uU62xS+Jz00NBRNmzaVnm/evNnillv6iiGjEuIt2oeavkKCugBceGg2QNlSoly5cli+fDn69u1rdN9hYWEoV64cli1bJs0bN24cGjRoYFZsderUKXIfE7YwcuRI7N69W7o9w9A93Iy5Ar4m02WL1ghFzb2s6LZv3y53CC6HCwnMJdw2MPY2Y8y9TZ+u7ObBnvf+27uJquYHbn3HKl++vM6tDREREbh48aL0vGbNmujZsycA4Ouvv8azzz6LxYsXY/fu3WbHoe/Y86uGGFzfWCsAfYWE3r17g4hQu3Ztg9sNHjxY6rtAn1u3bklNit944w2pCOPp6YmQkMexOvOHGw8PD3Tp0gVff/01OnXqhKeeekpaZqoDT8aYbZnqmLQobPE/w1juVVPnP3VrL3M44pYLV2Xsfw/TjwsJzCVkFrqIZowxAHjvvfdARHa9j7F06dJ22zdg3ofe1q1bo43GLV4eHh7SB+rhw4cDAD788EO89dZbUqd3ALS2MebAgQN6W1508fc3uE316tUNLtNXSDCXoQvdp556SqtYADz+3RU+liuM7FOnTh3s27dP6/VlqJ8OxpxJVFQUpk2bJncYNrFr1y65Q9DLWO5VU9+alZWVZe9wGNPLnp0tMsYYYy5twYIF6N+/v12PIYTA2rVrsXPnTjRq1Mjgeps2bcLSpUtRokQJaRjB/Px86UN0QEAAfvzxR61tzP0w36FDB+kD/DfffAPc/sLkNsZi1SwkrFixQm8nlWrmjrShHkpTk/oYmuc5btw4kx2hOatGjRqBiBAaGor4eG7azJxT48aNERYWhosXL+Ljjz+WOxyr2LtQbE/qPoKys7PN3kZ9C5vm0JCMFRUXEhhjjLFCcnJy4OHhUeRhFi318ssv4+WXXza6TnBwMCZNmqQ1z1RLDEtaBagLCZ06dQLWGF/3hRdeQJcuXQwu1ywktGrVCrVq1TK4rubQZJbSbM2hjv+ZZ54p8v6cRceOHbF69Wrp+ezZs2WMhjFdpUuXxpo1JhKFC3Cm26BmzZoF3PzU7PXVIxtZ0iLhm2++QbNmzdCrVy+zt5k9e7bJzo+LK77dzDi+tYG5hNo7d8odAmPMjfj4+DisiGBPXl5eaNKkCQCgf//+Ri+a1R/EPTWKDw1iL+ldt6CgAE2aNDF4G4KXlxfeeecdAEClSpWMxmjukJT6Woa88MIL0vHUsTjTBwNbGT9+vNwhMMY0PPfcczrz1P2dEBH69etn8T7r1a0rPTaUezWpb23IzMw0+xglS5bEsGHDLMqT48ePl/rgcSdJSUlF+ju6Ey4kMJeQtnmL3CEwxpjLEUJg48aNAJSdMBaWnZ2N1NRUAI8LCUKjkNDPwPjwpjr38vLywvjx40FEKFu2rEUxG2ploa+ws2LFCsTHx2sVI4pjIYE5NyFEPyHEBSGEQggRWWjZZCHEFSFErBCCe3MrJtatW6dzK5lm7unYsaPlO9XY3lDu1dStWzcAMNmajRUN/y8xjQsJzCXcm8PNOhljzFqFWxCUKFECAaoLVnVni5of5KdVqqx3P6YKCdZ0fvn666+bva6Pjw+qVq1a5GM5K/UFbHh4OA4dOiRzNMwM0QBeBLBfc6YQogGAVwA0BNADwAIhhP16hmUO4+vrq5N7QkNDAdhmZARDuVdTnTp1QERGbzNjljl27Jj0mAsJpnEhgTHGGHMTxoY6U1/8eniYvnjS7GhR30WzNRdgJUqUwLfffmvxdq+++ioAoK5G82BX9dJLLwFQdojWrl07maNhphBRDBHF6lnUB8AaIsohousArgBo5djomL00bNhQ6/mUKVPM3vaDDz7QmccfXOXXqlUrqbjOTONCAmOMMeYmRowYgXPnzuld9riQYPwL08GDB2PGjBk2j81aQ4cORV5eHqpVqyZ3KFZ78cUXkZ+fj3r16skdCrNOVQC3NJ7Hq+bpEEK8JYQ4KYQ4ee/ePYcEx6wTFhaG/Px86bkl/erMnDnTrPWaNm2KAwcOAABeeeUVywJkRVKc+9uxNS4kMJdQ6QvTQ5ExxhgzTgiBJk2aIDk5GcnJyVrL9N3aMFLPEIRt2rQx2EHi8ePH9fbF4CjFoYNMNWtuD2G2J4TYKYSI1jP1MbaZnnl6270T0WIiiiSiyODgYNsEzexO3/tUXyut2rVrG9yHumWD5gdXde794osvpOF59bViYPbDhQTTis9/XFaslQh3z2FnGGPMHgIDA3Xm6fsW5oKe8cmNXVy1bNkSLVu2NCuGoUOHokaNGmaty5jciKhbETaLBxCq8TwEwG3bRMScTVBQEABg2rRpOsuGDh2Kjz76yOj2pnIvcwwuIJjP7i0ShBAThBAkhAjSmMc92DKL3HhFd9gvxhhjtvO4kPB43j4936LZ6iJr6dKlmDp1qk32xZiT2gTgFSFECSFEDQDhAI7LHBOzE19fXxARhg8frjW/RIkSJrcDAA/ViDk7d+7Qm3uZY/CtDeazayFBCBEKoDuAmxrzuAdbxhizAyHEt0KIS0KIKCHEn0KIshrLuIDLjOrbty8AwMtL/20LanxxxZg2IcQLQoh4AG0BbBFC/AMARHQBwDoAFwFsBzCKiIwPecKKlf/97384f/680XXWr1+PTz75BLVr1wIA1K7FRQTmGuzdImE2gA+gfT8Y92DLGGP2sQNAIyJqAuA/AJMBLuAy8yxbtgx37tyBl4l787mQwJg2IvqTiEKIqAQRVSSipzWWTSeiWkRUl4i2yRknc7znnnsO4eHhRtepXr06pk2bBqG3Sw1d9evXR7aDbn1Yu3atQ47jTPh/nPnsVkgQQvQGkEBEhbuH5h5smcXK9HxW7hAYc3pE9C8RqbuQPgrl/bgAF3CZGXx8fFCpUiWteetSU6XH6hYLPXr00NnWUOeLjDHG9Dt37pzBUXSOlSmjM0/9AdfHx8fk7RK24o792OjrLJPpZ1UhwUQPtlMAfKJvMz3zuAdbZlSF996VOwTGXM1QAOpvv7iAy4rks7uJ0uOmTZuCiBASEqKz3t27d5GYmKgznzHGGPR2QtukSRM0adJE7/rrK1awd0hm4W/nmTFWFRKIqBsRNSo8AbgGoAaAc0KIOCi/FTsthKgE7sGWFcGtEe/IHQJjTsGcIciEEFMA5AP4VT1Lz664gMuM2rVzJ8482VV6Xrp0aYPrlitXDhUrVnREWIwx5nK6deuGN954w+z1x968aXolxmRml+Efieg8AKmUpiomRBLRfSHEJgC/CSFmAagC7sGWmSHnymW5Q2DMKZgagkwIMRhALwBd6XH7PC7gMovVqlULMQkJ0vNRo0Y5PIbevXtj06ZNDj8uY4yZ6/Tp0/Dx8TG5XuXKlQEAX375pcl1Q3JyDS7jpveOwa0xTLP78I+FydGDraenJyIiItCwYUM0bdoUs2bNgkKhkJYfP34cnTp1Qt26dVGvXj0MHz4cmZmZICKMHTsWtWvXRpMmTXD69GkAQGxsLCIiIqSpTJkymDNnjs5xly9fDg8PD0RFRUnzGjVqhLi4OHueLmPMTQkhegD4EEBvIsrUWCTLEGRy5t7g4GCtdS9evGjv0y22KlWqhBdeeAFeXnb57sGo2jwEGmMWkyv3vvHGG1rrhYWFuUVLpWbNmqFhw4Ym11P3N1C9evUiHYc/2DoWF2xMc8hVARGFFXo+HcB0RxwbAPz8/HD27FkAQFJSEl577TWkpaVh2rRpuHv3Lvr164c1a9agbdu2ICKsX78eDx8+xN69e3H58mVcvnwZx44dwzvvvINjx46hbt260v4KCgpQtWpVvPDCC3qPHRISgunTp7tlr6e25BlYHsr+4RhjRswDUALADtUFx1EiGkFEF4QQ6gJuPhw0BJmcubd///6YN2+evU+x2PMKDsadSzEOPy5fMDNWdHLl3p9//ll6rFAo0LlzZwwaNMgRp2y1Xr162f0Yw4YNQ1hYGLp27Wpy3XQTo+cw5gwc3iJBbhUqVMDixYsxb948EBHmz5+PwYMHo23btgCUFy99+/ZFxYoVsXHjRgwaNAhCCLRp0wapqam4c+eO1v527dqFWrVqGawu9urVCxcuXEBsbKzdz604q7GOCzGMmUJEtYkolIgiVNMIjWWyDkHm6NzLbCP8wH65Q8CsWbPw77//yh0GYy5Jrtw7Y8YMBAUFYfjw4XY7N1tJS0vDhg0b7H4cIQS6detmVqH0y5q6oyXUqVMHderUwezZs+0RHgBg/fr1dtu3q+GCtmluV0gAgJo1a0KhUCApKQnR0dFo0aKF3vUSEhIQGvr4tuKQkBAkaNwvCgBr1qzBq6++avBYHh4e+OCDDzBjxgzbBO+mklf8IncIjDErOTL3rl27VquJbVZWlm1Ows3c+0H+Vh3vvvsuunfvLncYjLksR+ZeQHnrxJIlS7BkyRLrg3eAMmXKON0Qtt2Tk3Xm+fn5ITY2Fk8++aTdjuvJLSGYBdyykACYd9+LvnU0q1O5ubnYtGkT+vXrZ3Q/r732Go4ePYrr169bHigDADxYyYUExooDR+Xe/v374+zZs9Lk5+dXtIDd3P358+UOgTFmA47KvRkZGRg4cCCWLl2KwMDAogXL0D3lgdwhMGaSWxYSrl27Bk9PT1SoUAENGzbEqVOn9K4XEhKCW7ceD70eHx+PKlWqSM+3bduG5s2bm+xIxsvLC++//z5mzpxpmxNgjDEX5OjcyxhjzLG5d8yYMejdu7dZ/QAw5+eOzfv5iwfzuV0h4d69exgxYgRGjx4NIQRGjx6NFStW4NixY9I6q1atQmJiInr37o1ffvkFRISjR48iICBAGroFAFavXm2yeZfakCFDsHPnTty7d8/m58QYY85OrtzLGGPuzJG5948//sC5c+cwfbrD+lNndhYQECB3CA63d+9efPnll2557pZy/FhOMsjKykJERATy8vLg5eWFgQMH4r333gMAVKxYEWvWrMGECROQlJQEDw8PdOrUCS+++CJ69uyJrVu3onbt2ihZsqRWb7SZmZnYsWMHfvzxR61jLVq0CAAwYsQIrfk+Pj4YO3Ysxo0bZ+ezLZ5CFiwE2nRHu3bt5A6FMWYmOXPv2rVrcfDgQWn5ggULOH8UQdgff8hy3JYtWwIAOnbsKMvxGXNlcuXeKVOmIDMzE61atdJa58iRI/wtr4Vihg0FPvjArGElbalOnToAgO+//x6RkZFuOQRvvXr1MGXKFLnDcAnCVcbIjIyMpJMnT8odBrNC+v0srJx6BAO/bIsyQWb+Q3lwA5jbBNnPrEdu/Vbw9fWFj4+PfQNlzAQhxCkiipQ7DnvjvFs8WJx7VXkX46KQlZABv0aOvZBVu3//PoKCgmQ5NnNOnHuZq7Dmmlede33q15Ol88P79++jfPnybnlbA9NlLO+63a0NzDXFj3wHZcqU4SICY4w5UFzfvrIdm4sIjDF3Fde3r2wjKAQFBXERgZmFCwmMMcYYY4wxxhgzGxcSGGOMMcYYY4wxZjaX6SNBCHEPwA2541AJAnBf7iCs4OrxA3wOzsLVz6Go8VcnomBbB+NsOO/aHJ+Dc3D1c3D1+AHOvUZx7rU5Pgf5uXr8gPueg8G86zKFBGcihDjpyp39uHr8AJ+Ds3D1c3D1+N1Jcfhb8Tk4B1c/B1ePHyge5+AuisPfis9Bfq4eP8DnoA/f2sAYY4wxxhhjjDGzcSGBMcYYY4wxxhhjZuNCQtEsljsAK7l6/ACfg7Nw9XNw9fjdSXH4W/E5OAdXPwdXjx8oHufgLorD34rPQX6uHj/A56CD+0hgjDHGGGOMMcaY2bhFAmOMMcYYY4wxxszGhQTGGGOMMcYYY4yZjQsJJggh4oQQ54UQZ4UQJ1XzAoUQO4QQl1U/y8kcYw8hRKwQ4ooQYpLG/DGq+ReEEN8Y2Fbn/CzZ3hGEEMuEEElCiGiNeU71NzBGCBEqhNgjhIhR/S7Hqea70jn4CiGOCyHOqc5hmmq+y5wDAAghPIUQZ4QQm1XPXSp+d+Lsube4511VLJx7Zca5lzka516+5rWWq+fe4pJ3AfvnXi4kmKcLEUVojLs5CcAuIgoHsEv1XBZCCE8A8wE8A6ABgFeFEA2EEF0A9AHQhIgaAvjOyG4Knx8s3N7elgPoUWie0/wNzJAP4H0iqg+gDYBRQogGcK1zyAHwJBE1BRABoIcQog1c6xwAYByAGI3nrha/u3HK3OsmeRfg3OsMOPcyOXDulc9yuHbeBVw/9xaXvAvYO/cSEU9GJgBxAIIKzYsFUFn1uDKAWBnjawvgH43nk1XTOgDdinJ+qvlmbe/A8wwDEO2Mf4MinMtGAN1d9RwAlARwGkBrVzoHACGqpPkkgM2u/joq7pMz5153ybuqmDj3OsnEuZcnB/29OPfK/zcoNnlXFbPL5l5XzbuqGO2ee7lFgmkE4F8hxCkhxFuqeRWJ6A4AqH5WkC06oCqAWxrP41Xz6gDoKIQ4JoTYJ4RoCQBCiCpCiK0a6+s7Pxja3ok409/AbEKIMADNAByDi52DqnnUWQBJAHYQkaudwxwAHwBQaMxzpfjdjTPnXnfNu4Dz/A0swrlXVnPAudeVcO51vtzrLL9/i7lq7i0GeRdwQO71smZjN9GeiG4LISoA2CGEuCR3QIUIPfMIyr9tOSibFLUEsE4IUZOIbgPoqbGuzvkR0X4j2/N4oUUkhPAHsB7AeCJKF0Lfn855EVEBgAghRFkAfwohGskcktmEEL0AJBHRKSFEZ5nDYeZx5tzLedeFcO6VD+del8S5l3OvTbhy7nXlvAs4LvdyiwQTVEkIRJQE4E8ArQDcFUJUBgDVzyT5IkQ8gFCN5yEAbqvmbyCl41BWo4IKb2zg/GDu9jJypr+BSUIIbyiT6a9EtEE126XOQY2IUgHshfIePlc5h/YAegsh4gCsAfCkEGIVXCd+t+Pkuddd8y7gPH8Ds3DulR3nXhfDudcpc6+z/P7NVlxyr4vmXcBBuZcLCUYIIUoJIUqrHwN4CkA0gE0ABqtWGwzlvT9yOQEgXAhRQwjhA+AVKOP7C8p7YiCEqAPAB8B9zQ2NnB/M2V5mzvQ3MEooS7BLAcQQ0SyNRa50DsGqqiyEEH4AugG4BBc5ByKaTEQhRBQG5XtkNxENgIvE725cIPe6a94FnOdvYBLnXvlx7nUtnHudNvc6y+/fLK6ee1097wIOzL36Ok7gSeqkoiaAc6rpAoApqvnloey84rLqZ6DMcfYE8B+Aqxox+gBYBWWSPA1l76MAUAXAVmPnZ2x7mc5vNYA7APKgrBoPc7a/gYn4O0DZ9C4KwFnV1NPFzqEJgDOqc4gG8Ilqvsucg8a5dMbjTmdcLn53mFwh9xb3vKuKh3Ov/OfAuZcnR/6NOPfyNa8tzsGlc29xyruquO2We4Vqp4wxxhhjjDHGGGMm8a0NjDHGGGOMMcYYMxsXEhhjjDHGGGOMMWY2LiQwxhhjjDHGGGPMbFxIYIwxxhhjjDHGmNm85A7AXEFBQRQWFiZ3GMwGCvIVSE54hPJVS8HTy4JaVkEucPcCULEh8pNT4VWhgv2CZMyIU6dO3SeiYLnjsDfOu8XL3dRsiLQ8zr3MZXHuZa7I2tyb71kJXhUr2y9AxowwlnddppAQFhaGkydPyh0Gs4H0+1lYOfUIBn7ZFmWC/Mzf8MENYG4TYNzfuD7sPdTYsN5+QTJmhBDihtwxOALn3eKl3/f70flyPude5rI49zJXZG3uvRXTFKFrt9ovQMaMMJZ3+dYG5pL4QpYxxiyzdHBLq/fBuZcxxixjbe4NXbTQRpEwZltcSGAu6eBrryMuLk7uMBhjzGV8888lq7bftXs3Lo4eY6NoGGPMPVibe+NnzsTnn3+O7du32ygixmzDZW5tYExT+dOn0aJFCyQnJ8sdCmOMuYRNZ+/gbfgWefthw4ZhW6W6NoyIMcaKP2tzb/aOHfj09BUAABHZKizGrMYtEpjLSklJkTsExhhjjDHGGHM7XEhgjDHGGGOMMcaY2biQwFzSE1euyB0CY4y5lL9GtbN6H5x7GWPMMtbm3okKhY0iYcy2uJDAXA6B0NC36PeaMcaYO4pNfGj1Pjj3MsaYZazNvdVsFAdjtsaFBOZyiIAFISFyh+uvO08AADbsSURBVMEYYy7lw/Xnrd4H517GGLOMtbl3jAd/XGPOiUdtYC6He6xlzDghRByAhwAKAOQTUaQQIhDAWgBhAOIAvExED+SKkTHGGGOMuS4ucTGXw4UExszShYgiiChS9XwSgF1EFA5gl+o5Y4wxxhhjFuNCAnM5RIRPE+/IHQZjrqYPgBWqxysAPC9fKEwOE5+ua/U+1Ll3/fr1eOedd6zeH2OMFXfW5t6V4C/QmHOySSFBCLFMCJEkhIjWmBcohNghhLis+llOY9lkIcQVIUSsEOJpW8TA3AcR4fe0NLnDYMyZEYB/hRCnhBBvqeZVJKI7AKD6WUHfhkKIt4QQJ4UQJ+/du+egcJkj9ImoYvU+1Lm3b9++WLRokdX7Y4yx4s7a3HsQwkaRMGZbtmqRsBxAj0Lz9DajFUI0APAKgIaqbRYIITxtFAdzExfr1pM7BMacWXsiag7gGQCjhBCdzN2QiBYTUSQRRQYHB9svQuZwHWbusXofnHsZY8wy1ubeH20UB2O2ZpNCAhHtB5BSaLahZrR9AKwhohwiug7gCoBWtoiDuQfuI4Ex44jotupnEoA/ocyxd4UQlQFA9TNJvggZY4wxxpgrs2cfCYaa0VYFcEtjvXjVPB3cxJbpxYUExgwSQpQSQpRWPwbwFIBoAJsADFatNhjARnkiZK7uiSeekDsExhhjjMlMjs4W9d3oo/eTITexZfoQCHsyMuQOgzFnVRHAQSHEOQDHAWwhou0AvgbQXQhxGUB31XPmRtrXKm/1PvZkZGD//v02iIYxxtyDtbk3SuNxYmKidcEwZkP2LCQYakYbDyBUY70QALftGAcrZoiAUQnxcofBmFMiomtE1FQ1NSSi6ar5yUTUlYjCVT8L347GirmZfZtYvQ/OvYwxZhlrc+8C8fg72MqVK1sbDmM2Y89CgqFmtJsAvCKEKCGEqAEgHMpvzRgzCxFhftUQucNgjDGX8uEfUaZXMoFzL2OMWcba3DuSb+llTspWwz+uBnAEQF0hRLwQYhgMNKMlogsA1gG4CGA7gFFEVGCLOJh7ICJ08feXnl+8eBHTp0+XMSLGGHN+h64mW70PzdzLGGPMNGtzr/VtyRizDy9b7ISIXjWwqKuB9acD4E9+rEgKj9rQsWNHpKSk4N1330XJkiVliooxxhhjjDHG3IMcnS0yZpXChYTs7GwAgEKhkCMcxhhjjDHGGHMrXEhgLoeI0CD2kvRcqDqhKVxgYIwx9tjBD7tYvQ/N3MsYY8w0a3PvSE9PG0XCmG1xIYG5HiL0CwiQnqoLCQUF3NUGY4wZsvGs9QMkaeZexhhjplmbeztwi1vmpLiQwFwOgTCt0uPhb7iQwBhjpn37T6zV+9DMvQC3BGOMMVOszb2vGciz69evx5YtW6zaN2PWsElni4zJiQsJjDEmD4VCAU9udssYYw7Xt29fAFzQZfLhFgnM5Wjmy59++gnp6ekAgPz8fJkiYowx98QXsIwxxph74kICczlEhJHx8QCAt956S5rPLRIYY8ywmS81tnof6tyrxqPlMMaYcdbm3kWFWn0dPnwY3t7eVu2TMVvgQgJzOUSEC6ohHzVxIYExxgyrW6m01fsonHu5RQJjjBlnbe69Wej5d999x61wmVPgQgJzOUSEfbVr68znQgJjjBn2/PzDVu+jcO7lFgmMMWactbl3RqHr24SEBJ119u7di4cPH1p1HMYsxYUE5nIMfQPGhQTGGHMsLiQwxphjHT9+XOt5ZmYmunTpgpYtWyInJ0emqJg74kICczmGCgnczIsxxhyLb21gjDF5Xb9+HQAQGxuLoKAgmaNh7oQLCcz1EGFdaqrObG6RwBhjhvWOqGz1PgrnXm6RwBhjxhU19544eRIAsFk1OpkhjRo1kh5nZGQU6ViMFQUXEpjLIRA+u5uoM58LCYwxZtgHT9ezeh+Fc29ycrLV+2SMseLM0ty7Zs0alC1bFh9++AEAYM69exYf886dO0hISMDQoUNx8OBBi7dnzBxecgfAmKWIgN+rh6HfjTit+VxIYIwxw4atOIHOVu6jcO6tWbMmEhMTUbFiRSv3zFjxJYToAWAuAE8AS4joa5lDYg7U5dN1GIpQ/PHHH7hw+SzatGmDZs2aoVSpUti1axcePnwIHx8fNG3aFOXLl8err74KALh2LR1AaSwICcGzabfMPt7IkSOxcOFC6XlMTAyOHDkCQNmKzMPDAwUFBfDUGFZy06ZN6NSpE8qWLWuTc2bugQsJzOUcPnwYDX19deZzIYExxgyLTcxAZ+jmTkvoy71JSUlcSGDMACGEJ4D5ALoDiAdwQgixiYguyhsZc5S8ksHAQ2DixIlIybhr8fZ1SpSwaH3NIgIAHD16FD///DN27NiB1atXS/MrVqyI7OxstGvXDtu2bZPmLV26FKmpqXjppZfgqyfnm1JQUAAhBDw8uOF7cceFBOZy3n33XWyrVFdnPne2yBhjjtevXz9cuHBB69stxpikFYArRHQNAIQQawD0AWCwkPDgwQOsW7cOCoUCXl5e8PLygkKhQEFBgfSliRACnp6eEEJI22k+Lvzc3GWG1isoKEBubq7RE/XyUn6sMNYJa1GXAZB+H/n5+RBCSB9W1Y9zcnLg6emJ/Px8EBE8PDxARDrn5Ejvvfceyr/2k2zHVxs6dKjOvLt3lUUNdRFBPa9Xr14AgAEDBqBNmzaIjo5GRkYGgoKCMGjQIKxZswa3b99G165dsWvXLoPHDAsLg7e3Ny5fvoy6deuidevW+OWXX6TlZcqUQf369ZGQkABPT0+EhYXB398fDRo0wNWrV3HhwgVERESgffv2mDhxIpo0aYL09HQIIdC+fXscOnQIDx48wODBg3H69Gns3LkTffr0gRACTZs2BREhKioKkZGRuHr1KuLi4lClShWUL18eV69eRXp6Opo2bYoSJUpInVQmJCSgdu3aOHLkCCpXrowGDRrA19cXV69exc2bN1G1alWUK1cOwcHB0nvijz/+QEREBLy8vJCcnAwvLy906tQJWVlZyMnJQV5eHjw8PFC+fHmcOXMGdevWxaFDh3Dv3j107doVmZmZ0nu5QoUKyMnJQVpaGtLS0hATE4MHDx6gVq1aqFmzJkJCQpCbm4tSpUrhypUrOHXqFI4dO4bbt2+jSZMmePXVVxEVFYXc3Fw0a9YMN2/exM2bN3Hjxg08evQITZs2RfXq1VGyZElUr14dPj4+iI6Oxp07dxASEoJGjRohOzsbp0+fRmhoKGbNmmX0dSVcpcflyMhIOqnqdIS5tvT7WVg59QgGftkWZYL8zN/wwQ1gbhOEzXmIFUE10fnqVa3F+/fvR8eOHW0cLWO6hBCniChS7jjsjfNu8dJl2k70veNh89wLKC8+K1SoYMNoGdPlirlXCNEXQA8iGq56PhBAayIaXWi9twC8pXrawrFRMntq8M4qjFRUxie/vmZRi4TqAQJx40vj6J+BaBsVZ78AGTPOYN7lFgnMJem7kOVbGxhjzLCNo9pj5dQjVu1DX+4FgKysLKv2y1gxpu/rcJ1v8YhoMYDFANCwYUNat24dPDw8kJ+fj/z8fHh4eMDT01P65lLdQkFj+8L7s3iZOeuVLFlS70kSkdQy1FSTdmMtBIwtU7c48Pb2BhFJk0KhABHBy8sLRARvb2/k5eXBy8tL1tYImZmZ+Ouvv7BgzvvA678VeT+v3Lhhw6gsM3r0aFSrVg1//vknIiMj0adPHwwdOhQ9evTA4sWLUapUKTx69AjNmzfHxYsXkZ2dDQB46qmnEBERgf379+Phw4cYOnQofHx8EBUVhUePHuHevXuoVq0aateujbt37yIwMBAlS5aEn58fwsLCEBsbCx8fH6SkpKB69erYu3cvGjRoAB8fHyQlJaFWrVr4888/UaNGDbRs2RIPHjzAqVOn0KZNG9SuXRuenp7w8fHBiRMn0Lx5c+Tm5uLs2bMICgqCh4cHcnJyIIRAqVKlUKZMGQQHB+P27dvIyspChQoVkJqaiqysLFSpUgX+/v64du0aUlNTERQUhAoVKqBUqVIQQiA7OxsxMTEoU6YMfH194eHhgdzcXISHhyM7Oxs+Pj64f/8+ypYtC4VCgUePHsHf3x8XLlyAv78/qlSpgtzcXGRmZqJkyZLw9fWFv78/EhMT8ejRI6SnpyMxMRH169eHv78/goKCpFY3sbGxePjwIS5duoRLly6he/fuaNiwIWJiYlC6dGmUK1cO6enpuHz5MqpXr46bN29K51OmTBn4+PigTJkyuHXrFtLT0+Hl5YU6deogNzcX8fHx8PPzw4oVK7BhwwaDrw8uJDCXNKp8EOYn39eal5GRgYSEBFStWlWmqBhjzHktPXgdPlbuQ1/uBZRNWIcOHYqlS5daeQTGip14AKEaz0MA3Da2gZ+fHxo2bGjXoJhjtGjRAikBLYErptc9d+4cvvvuO5QvXx5z5syR5g8qF4gv0oo+Qk6fPn0wZcoUtGrVCgDw008/4c0338SLL76IOXPmwMfHB8nJycjMzMTRo0cxbNgw+Plpt1qbOHGi9PiGqrDx448/FjkmU3r27Kn1fNCgQTrrvPHGGyb30759e+lxt27dihyP+nenT7t27SzeX4sWxhsdNWjQwOQ+DOWIJ554wqJYIiMNN/Lq3bu30WIc94LBXNIo1b1Mmp577jmEhITIEA1jjDm/nw/FWb0PfblXbdmyZVbvn7Fi6ASAcCFEDSGED4BXAGySOSbmQAfuKr+3nTJ1KjZu3AgAqFWrFhQKBe7evYuDBw/i3r17aNKkCX755RfMnj0bycnJeP/99wEAgwLLmX2sbt26Sf0hjBgxAqtXr8Zff/2Fli1b4qeffsLXX3+N4cOHQ6FQYP369QgNDUXFihXRoEEDREZGYvTo0TpFBMYM4RYJjDHGGLOJvXv3onPnznKHwZjTIKJ8IcRoAP9AOfzjMiK6IHNYTAbDhw3DzUTl7WHBwcFS53r6+pcJDAzEO++8A8xbbNExGjZsiFmzZuH999/X+VZ7+PDh0mM5b/lgxQe3SGDFjqt0IMoYY8VNly5dsHPnTp35mzZtwvLlyx0fEGNOgIi2ElEdIqpFRNPljofJp2HDhvjss8+wbt06k+t6epr/MW3w4MEAlP2FeXh4mNU0njFrcSGBuaS+cdcNLuNOFxljTNfSwdZ3dm8s96rduHEDOTk5SE1NRW5uLhYtWoQ+ffqYdT8rY4wVN5q5VwiBTz/9FKGhoUa2UK2r6qfznfhbRtfr3r076tZVDoteqVIlKyJlzDJ8awMrdry9vXHv3j1pTFjGGGOOU1BQAF9fXwDAH3/8oWyeyxhjzC4WLlyI4OBgJCYmYvz48XKHw9wIt0hgLumPsBpGl1+4cAGTJk1CWlpakfbPt0cwxoqbYStOWr0PU7kXAP7++2/pcUxMjNayJ598EufOnbM6DsYYcxXW5t6FIYZbL4wZMwa1atVCmTJlMHfuXJQqVcqqYzFmCdkKCUKIHkKIWCHEFSHEJLniYM4nNjYW//33n1X7eOmllzBz5kyULVsWS5YsQVRUlLTs9OnTWLZsGQYMGIAjR5Rjqufk5ODu3bsAgKioKHh4eGDHjh1WxcAYY85u9+7dWsOM2cLmzZulxzdv3tRatmfPHq0WCrGxsQgICMDPP/+std7y5cvx119/YePGjUhJSbFpfIwxVlxYM6QhY9aS5dYGIYQngPkAukM5vu4JIcQmIrooRzxMHmnpaRAl8lGyZEmMHj0a5cuXx5kzZ7B161YAQLNmzbBt2zZcuXIFcXFx6NmuEcwdACc5+fF4u2+++SYA4N69e4iMjJTGvwWAa9eu4eeff8b06dOxcuVKzJ8/H2vXrgUAvP/++zh//rz0jVqVKlXg6+sLHx8fKBQKJCQkaN3jlpeXB29vbwBAbm4uAMDHR/+o7UTEPeYyWQghegCYC2Xv4UuI6GuZQ2IySUlJQdeuXQEob0d47rnnsHTpUnzzzTeYMmUKypUrh+HDh+PYv//iqSIe46efftKZd+TIEaxevRqbN2/G+fPnkZ6ejqFDh6JOnTp4+PAhWrZsqdWfQteuXTF16lSsW7cOH3/8MVavXo2uXbuiatWqOHDgAF544QVpXSLCpk2b8Oyzz8LLy7pLHCJCTk6OdJsGY4w5g6tXr+KLL77A7du30atXL7nDYW5MyNGEWwjRFsBnRPS06vlkACCirwxtExISQqNGjdJpck5EICKUKFFCeq65TN9jNQ8P7QYZQggIIVBQUACFQiHN9/LykrZXH6/w48L7MfRYPSkUCuTn5+tdpt7Gw8NDWld9LIVCIU1CCPj5+SE7O1vv70xzf+p9qR/n5OSAiODh4SH9HgoKCqR5lpyTqcfq35V6vqfCFz7XGuCTX19DSsZdvbHrUz1AIG58aYTNeYheXuUxP/m+2dvaS2BgIB49eoScnBydZaVLl0bDhg1x9OhRvdvWqlULV69ehYeHB0qUKIEGDRrg1KlTAIC6detCoVDA29sbDx48wDPPPIP169fr3Krh5eWFBg0aSK+B27dvw9/fH6GhoYiKikLNmjUREBCASpUqoXbt2gCA7Oxs3LlzB6VKlYK/vz9iY2Px6NEjZGdnIzw8HKGhoYiJiUGdOnVw+fJl1KpVC56enjh9+jQiIyORl5eHgoIClC5dGl5eXhBCwMvLC+np6Shfvjzy8/Nx+fJlVKpUCTExMQgODkZ4eDguXLiAgIAAxMbGomXLliAilC1bFkIIPHr0CKmpqTh06BAaNGiAsLAwlC1bFnl5ebh16xYqV66M+Ph41K5dGwkJCQgMDAQAZGRkSB8WiAgpKSlITEzExYsX4ePjgyeffBJly5aFj48PhBBIT09HbGws4uLiEBUVBW9vb+Tl5aFEiRJo06YNKlWqhEaNGmH58uVo1qwZ6tWrh+TkZJQqVQqpqanYsWMHMjMzce/evVNEZH3PdQ6mKuL+B40iLoBXDRVxmzZtStu3b0deXh4AZf8jOTk5CAgI0MqDmj/VBTUPDw8pd2nmLXXuUq+vUCiQk5ODEiVKQAgBHx8fPHr0CN7e3sjPz4e3tze8vLyQm5srbVOiRAmTuVf9PCsrCyVKlEBeXp6U30uUKIHc3Fz4+vpqfVDUzPvm/C9x5GMPDw/4+/sjKytLqxCpuY6fnx9yc3Ol17WHhwdKliwJDw8PpKWlYdE/1xFyWlEscq+mrl27YteuXQCAVq1a4fjx4yhbtiwmT56MpUuXolSpUnjmmWewePFitGzZEpGRkcjOzka5cuVw+PBhtGzZEpmZmYiNjZUK13Xr1kWFChWwbds21K9fH926dUNAQABmzpyJZ599FgUFBXjppZdw8eJFCCHw8OFD5ObmYsCAAUhNTUXp0qVRunRpeHh44MGDByhZsiSSk5NRvXp13L59G0FBQVLRo3///rhz5w4CAgKQm5uLM2fOoF27dsjMzIS3tzcSExNRpUoVlC1bFmfOnEHdunWRkJCAoKAg6f1469YtKBQK1KhRA1lZWShfvjzu37+PkiVL4sGDBwgMDMSdO3fg7e0NX19fFBQUoKCgAHfv3kVERATOnz+P0NBQPHz4ENWqVUNubi5u3LiBJk2aICUlBX5+fkhOToaHhwcCAwORlpYm5X1fX1+UKVMGqampyMrKgq+vL4QQqFSpEuLi4lC5cmVkZWVh//79aNq0KS5duoSsrCw0bdoU/v7+ICIpR1+/fh3ly5eHh4cHqlatigsXLqBq1ao4e/Ysypcvj169erlk7rVUZGQknTxp/a1IzDnM/usifLYnYuCXbVEmyM/8DR/cAOY2wScrvPFFnPILssOHD6Nt27Z2ipQxXUIIw3lX/QHVkROAvlB+E6Z+PhDAPD3rvQXgpGoinorHFOhfkea9vYsC/StatF31AEH0aRmqHiBkPwee3H46KUfutEHubQvgH43nkwFMNrK+3L9nnmw4ce7lqRhMLpl7LZ1atGhBrPhIu5dJ897eRWn3Mi3bMCWO6NMydOnov9J74MSJE/YJkjEDjOVduUZt0Nemm3RmEC0GsBgAmjdvTocPH9b6xp7o8bfnOTk50nxzviUnIunbJ/W3Y8rflfKbH09PT2m9/Px8reMaeqxe39BjzWOov8XVPLbmcnV86nNUH8fT01OrpUJWVhb8/Pz0NpPX3Efhxz4+PtI3hurhEj09PaX9mntO5jzW/F0RER4kZWDTN9bdxbK3Vi10vnrVom3U51tYz549pdspTJkzZw4KCgpw6tQpHD16FG+//Tbq1auHgoICXL16Fc2bN0dmZiZSU1MRFBSE+vXrY9u2bdiyZQsGDBiA/Px8pKSkoGHDhgCULQq2bduG8uXLo0OHDvjvv//Qpk0bAMrWBc2bN0dMTAwaNWqES5cuIT4+HiVLlkTJkiWRmpqKsLAw+Pr6okSJErhy5QqqV6+OqKgoREREICkpCcHBwcjJyYGPjw+CgoKkb2iJSPoGKTMzEyVLlkR+fj6ICIGBgYiPj0dAQAA8PDzg5eUFLy8vZGVloVSpUoiPj0flypWhUCikb3pLlSoFIkJWVhYUCgXS09MRFBSE1NRUFBQUSN9gKxQKpKSkoEKFCtI3zgB0vm3OzMyEj4+P9E11ZmYm/P39kZ6ejgoVKiAxMRHly5eXXtMFBQXw8vKCr68vMjMzkZaWJn3DFRwcjEePHsHT0xNeXl5ISEiAn58frl+/joCAAPj7+yM3NxceHh7St3XZ2dnw9fWFt7e39F7Jy8tDamoqvL29UblyZYtee06kKgDNcaTiAbTWXEEI8RaURVwEBgZixowZUquPvLw8eHl5ISMjQycPqn96enoiLy9Pyl2FJ83WCPn5+fD09ISfnx/u37+P0qVLIzc3F35+fnj48CECAgKQl5cntRrx8PAAESE7O1vK0WqaeUf9nIjg6+uL3Nxc+Pj4SD9zcnLg7e0tPc/OztbKsxq/C6d5nJeXh0ePHsHPz096f6jHC1e3AFF/g61+P+Tn50utz1JTU7E5oymQAasUJfc6o8qVK+Pu3bt6/yeYq3z58ggICEBCQoLUKq1du3ZITExE7dq1UbJkSdy6dQtXrlxBhw4dIIRATk4OgoODUbFiRZw7dw5paWlo164dfH19sWXLFjRq1Ahnz55FnTp1ULlyZcTFxSE4OBgFBQWoVKkSoqKi0KhRI1y4cAFZWVlo3bo1Hjx4gO3bt6N+/fqoUaMGSpQoAU9PT9y5cwflypVDYGAgzp8/Dy8vL8TExOD5559HcnIyKlWqhOjoaLRu3Rr//vsvPDw8ULZsWQQHB6N06dKIi4tD165dUaJECVy7dg1paWkoW7as9PpKTEzEvn378NRTT6Fp06a4cOECLl26hBo1auDmzZto2rQpLl68iGbNmuHSpUtYu3Yt+vTpg40bNwIA6tSpg06dOiEmJgZdu3bFjh07EBMTAx8fH7zwwgsICgrCoUOHUK5cOZw+fRodO3bEqlWrbPL3Z8yR+sw/hL5WdEvnMWmy9Fh9Cy1jzsBlbm3gZl7FR/r9LKycegQDv2yL0uV9QUS4f/8+Nm7ciEGDBmHv3r3w8fFBw4YNcf36dSQnJyMyMhJlkQ6fBS0QNuchtlWqiwaxl8w+5ogRI7BgwQK8+eabWLp0KerWrYvY2Fjpg/6+ffvQr18/JCUl4ccff0RERARefvllpKamIiYmhpuRMS1Gm3k5MSFEPwBPE9Fw1fOBAFoR0Rh963PeLV6aTNyKtx/6YuCXbZGenYzQ0FB0794dQgi0aNECNWrUwFtvvSWt3759e3Tr1g37N63E7t73i5R7Ddm8eTO+++477N27V5pXqlQpVK9eHRcvPi40BwQEoEePHujVqxc2b96MgoIC/PHHH7h+/Tqio6NRqVIlREZGIjExEQUFBahcubLOFw7q4lVycjJOnjyJHj166I3p8uXLqFKlCry8vODp6SkVo9QFVUC7LxzmeK6aey3Fubd40cy9Rbm14crfFRB++goA5ahkDRo0sFOkjOkylnflapFwAkC4EKIGgAQArwB4TaZYmIzUF3wVKlSQOkV8+umnpeUVKlR4vPKDLIv2/d1332HChAkAgC5dukAIgQULFuDDDz9EeHi41rqDBg0CAFSvXh0zZsyQ5pctW5aLCKw4iQegOY5UCIDbMsXCZBQSEqLTigNQtkLp1q2bdH8/ANx7rRfwW1ebHTslJQXlypVDjx498Morr6B27drIzMzEnDlzIIRA48aNER0dLbUkUveBNGDAACgUCly+fBlhYWEICwuT9lmpUiW9x9JsLRMUFGSwiABA5/+CPlxEYIzJiXMQcyayFBKIKF8IMRrAP1D2HL6MiC7IEQtzTRcMdDAJKMcpnzNnDho3boz33nsPBw4cQMeOHQEoR1Ew52KRsWKKi7hurG4lf+BhvtF1XnrpJZ15wcHB0mNjudfQ/tavX681Tz3OuaenJ37//XedbQ4fPozU1FSULFlSZ5mHhwfq1q1rUQyMMSYnc3KvUaHVAFWLBGtHo2HMlop+w46ViGgrEdUholpENF2uOJhr6ncjzuAyf39/NG7cGIDyW6hOnTrxUIuMQVnEBaAu4sYAWMdFXPexdHBLq/dhLPeq3b17F9nZ2YiOjsby5cvRp08f5bb9+gEwPCyuWunSpbWG1mWMMVdmbe4VU6dIj7lFAnMmshUSGLPGZxX1N2MFYFXnWYwVd1zEdV/f/GN93wbGcq9ahQoVUKJECTRs2BD+/v7466+/QET49ddfkZKSYnUMjDHmSqzNvaTRyWi5cuWsDYcxm+FCAnNJL5ctqzNv8ODBGDx4MH744QfHB8QYY05u09k7Vu9DX+41l7e3N18EM8bcjtW598AB6aH61jDGnAHfaMNc2uDBg7FixQpUr14dy5cvlzscxhhza61btza9EmOMMYvxbQ3M2XCLBObS1GPJcx8IjDEmvyFDhsgdAmOMMcYcgAsJzCU9cUXZe616eDL1T8YYY/r9Naqd1ftQ517GGGPmsTb3enz7LQD+0ow5H/70xVxSQ19fAI9bJHAhgTHGjItNfGj1PtS5t7C3334bAEBEVh+DMcaKE6tz781btgmEMRvjT1/MJS0ICQHwuIDAVVrGGDPuw/Xnrd6HOvcWxjmYMcb0szb3Kn74n40iYcy2uJDAXBr3kcAYY86DWyQwxhhj7oELCcyl8a0NjDEmPy7mMsaYfXGeZc6GP30xl/RponJMXi4kMMaYeSY+XdfqfahzryHcIoExxrRZm3s9Bw+xTSCM2Rh/+mIu6fe0NADcRwJjjJmrT0QVq7Z/6aUXpdxb2KRJk9CxY0e8+uqrVh2DMcaKG2tzr3eXzjaJgzFb40ICc0kX69YDwC0SGGPMXB1m7rF6H+rcW1i1atWwf/9+BAYGWn0MxhgrTqzNvdlDhtgmEMZsjD99MZfGnS0yxhhjjLHijq91mbPhQgJzaV5eXnKHwBhjjDHGmF1xIYE5Gy4kMJe0JyMDAODj4wOAO/hijDFT2tcqb9X2Qggp9zLGGDOPtbnXo1mEbQJhzMa4kMBc0qiEeACAt7c3AC4kMMaYKTP7NrF6H+rcyxhjzDzW5l7f994HwC0SmPPhQgJzSfOrhgB4XEhQKBRyhsMYY07vwz+irN6HOvcyxhgzj7W5N3vWLBtFwphtcSGBuaQu/v4A+NYGxhgz16GryVbvQ517NakLuowxxnRZm3sVZ87YKBLGbIsLCczlfP/999JjvrWBMcbkU65cOezatUvuMBhjjDHmYFxIYC7npRdflB5zIYExxuSRn5+PlJQUdOzYUe5QGGOs2OM+Epiz4UICc0ltE+8AeDz8I/eRwBhjxh38sIvV+2gQe0l67OnpafX+GCsOhBCfCSEShBBnVVNPjWWThRBXhBCxQoin5YyTycPa3Ftm9W82ioQx2+JCAnNJvX39AAAeHsqXMLdIYIwx4zaevW31PvoFBNggEsaKpdlEFKGatgKAEKIBgFcANATQA8ACIQRX4NyMtbk3d9duG0XCmG1xIYG5pMllywJ4/I0YFxIYY8y4b/+JtXof0ypVtkEkjLmNPgDWEFEOEV0HcAVAK5ljYg5mbe7NXrLERpEwZltcSGAujQsJjDHGGHMCo4UQUUKIZUKIcqp5VQHc0lgnXjVPhxDiLSHESSHEyXv37tk7VuaCuI8E5my4kMBcmrqQwH0kMMaYvfFFLHNfQoidQohoPVMfAAsB1AIQAeAOAPXwUvreNHq/+SCixUQUSUSRwcHB9jgFxhizKS4kMJf03n1ltT4wMBAA8Nxzz8kZDmOMOb2ZLzW2eh8j4+NtEAljroeIuhFRIz3TRiK6S0QFRKQA8BMe374QDyBUYzchAKzvrIS5FGtzb6kPPrBRJIzZllWFBCFEPyHEBSGEQggRWWiZ3l5qhRAthBDnVcv+J7idDiuCizm5AJSFhISEBMyaNUvmiBhjzLnVrVTa6n1cyM62QSSMFS9CCM3OQ14AEK16vAnAK0KIEkKIGgDCARx3dHxMXtbmXq9aNQHwrQ3M+VjbIiEawIsA9mvONNFL7UIAb0GZTMNVyxmzyPaqylsMPTw8UKVKFWkYSMYYY/o9P/+w1fvYV7s23n33XZw7d84GETFWbHyj+pIsCkAXAO8CABFdALAOwEUA2wGMIqIC+cJkcrA296a9PcJGkTBmW1Z9+iKiGEBvhUzqpRbAdSHEFQCthBBxAMoQ0RHVdr8AeB7ANmviYO6Lq7OMMeZYjRs3RpMmTeQOgzGnQUQDjSybDmC6A8NhjDGHsFcfCYZ6qa2qelx4vl7cgy0zxcODu/lgTE0I8ZkQIkEIcVY19dRYpvd2M8YsxaPkMMaY4/GXZ8zZmPwUZqKXWoOb6ZlHRubrxT3YMkPWp6cD4KTKmB6ziShCNW0FTN5uxtxE74jKplcyYV1qqvWBMMaYG7E29/p26waAr3mZ8zFZSDDWS62RzQz1Uhuvelx4PmMW+Vw1agO3SGDMLNLtZkR0HcAVPO5VnLmJD56uZ/U+PrubaINIGGPMfVibe0uPfMdGkTBmW/b6FKa3l1oiugPgoRCijWq0hkEAjBUkGNNrtaqzRa7OMqZjtBAiSgixTAhRTjXP0O1mOviWsuJr2IoTVm0vhMDv1cNsEwxjjLkJa3NvyoSJNoqEMduydvjHF4QQ8QDaAtgihPgHMNlL7TsAlkD5jdhVcEeLrAgalPAFwC0SmPsxcbvZQgC1AEQAuAPge/Vmenal97YyvqWs+IpNzLB6Hw19fW0QCWOMuQ9rc2/BtWs2ioQx27LqUxgR/UlEIURUgogqEtHTGsumE1EtIqpLRNs05p9U3RpRi4hGkwN6bfL09ERERAQaNmyIpk2bYtasWVAoFNLy48ePo1OnTqhbty7q1auH4cOHIzMzE0SEsWPHonbt2mjSpAlOnz4tbZOamoq+ffuiXr16qF+/Po4cOaJz3OXLl8PDwwNRUVHSvEaNGiEuLs6u5+tOuEUCczfGbjcjortEVEBECgA/4fHtC4ZuN7MrOXNvcHAwIiIipOnixYv2Pl23wZ0tMubc5Mq9b7zxhlbeDQsLQ8WKFR1yzu6Ar3mZs7Fq+EdX4efnh7NnzwIAkpKS8NprryEtLQ3Tpk3D3bt30a9fP6xZswZt27YFEWH9+vV4+PAh9u7di8uXL+Py5cs4duwY3nnnHRw7dgwAMG7cOPTo0QN//PEHcnNzkZmZqffYISEhmD59OtauXeuo03ULSfn5ALhFAmOahBCVVbeQAcALAKJVjzcB+E0IMQtAFahuN7N3PHLm3v79+2PevHn2PkWXUt7fB3ho3T6S8vNsEwxjzG7kyr0///yz9FihUKBz584YNGiQQ87ZmVmbe0W5QNsFw5gNud2nsAoVKmDx4sWYN28eiAjz58/H4MGD0bZtWwDKal/fvn1RsWJFbNy4EYMGDYIQAm3atEFqairu3LmD9PR07N+/H8OGDQMA+Pj4oGzZsnqP16tXL1y4cAGxsbGOOkW30OXaVQBcnWWskG+EEOeFEFEAugB4FzB5u5lDODr3Ml0bR7W3eh+dr161QSSMMUeRK/fOmDEDQUFBGD58uL1P0elZm3vLL/nJRpEwZltuV0gAgJo1a0KhUCApKQnR0dFo0aKF3vUSEhIQGvq4NXBISAgSEhJw7do1BAcH44033kCzZs0wfPhwPHr0SO8+PDw88MEHH2DGjBl2ORd3NTKwPABukcCYJiIaSESNiagJEfXWaJ1g8HYzR3Jk7l27dq1WE9usrCy7nJMrWXrwutX7GFU+yAaRMMYcyZG5F1DeOrFkyRIsWbLE5ufiiqzNvY/WKFs185dnzNm47acwc+7x1LeOEAL5+fk4ffo03nnnHZw5cwalSpXC119/bXA/r732Go4ePYrr162/iGNKo4KUF7OcVBlzLY7Kvf3798fZs2elyc/Pz+rYXd3Ph+Ks3oc69zLGXIujcm9GRgYGDhyIpUuXIjCQm+QD1uferN/X2SYQxmzMLQsJ165dg6enJypUqICGDRvi1KlTetcLCQnBrVuPR0yLj49HlSpVEBISgpCQELRu3RoA0LdvX60OaQrz8vLC+++/j5kzZ9r2RBi3SGDMhTg69zLb4sItY67Jkbl3zJgx6N27N7p27Wr7E2GMORW3+xR27949jBgxAqNHj4YQAqNHj8aKFSukzmQAYNWqVUhMTETv3r3xyy+/gIhw9OhRBAQEoHLlyqhUqRJCQ0Olfg927dqFBg0aGD3ukCFDsHPnTvC47Lbl5eUW/YUy5vLkyr2MMebOHJl7//jjD5w7dw7Tp0932PkxxuTjFp/CsrKyEBERgby8PHh5eWHgwIF47733AAAVK1bEmjVrMGHCBCQlJcHDwwOdOnXCiy++iJ49e2Lr1q2oXbs2SpYsqdUb7Q8//IDXX38dubm5qFmzprRs0aJFAIARI0ZoxeDj44OxY8di3LhxDjrr4i16yBA8vXcPeJx7xpyXnLl37dq1OHjwoLTdggUL0K5dO0edulNaOjgSx+dFm17RgGHDhmHopoFY/+yzNoyKMWZrcuXeKVOmIDMzE61atdKK58iRI259e5m1ubfyDz8gfMhYo7dRMyYH4SrjQUdGRtLJkyflDoPZQPr9LKycegQDv2yLMkEW/GN5cAOY2wQYF4WshAz4NWpovyAZM0IIcYqIIuWOw9447xYvJ6KTcHxeNOde5rI49zJXZG3uzX5mPXxbd7NfgIwZYSzvut2tDax4iOvbV+4QGGPMpQxbYf0HE869jDFmGWtzb/zId2wUCWO2xYUExhhjjDHGGGOMmY0LCYwxxhhjjDHGGDOby/SRIIS4B+CG3HGoBAG4L3cQVnD1+AE+B2fh6udQ1PirE1Gx7+mT867N8Tk4B1c/B1ePH+DcaxTnXpvjc5Cfq8cPuO85GMy7LlNIcCZCiJOu3NmPq8cP8Dk4C1c/B1eP350Uh78Vn4NzcPVzcPX4geJxDu6iOPyt+Bzk5+rxA3wO+vCtDYwxxhhjjDHGGDMbFxIYY4wxxhhjjDFmNi4kFM1iuQOwkqvHD/A5OAtXPwdXj9+dFIe/FZ+Dc3D1c3D1+IHicQ7uojj8rfgc5Ofq8QN8Djq4jwTGGGOMMcYYY4yZjVskMMYYY4wxxhhjzGxcSGCMMcYYY4wxxpjZuJBgghAiTghxXghxVghxUjUvUAixQwhxWfWznMwx9hBCxAohrgghJmnMH6Oaf0EI8Y2BbXXOz5LtHUEIsUwIkSSEiNaY51R/A2OEEKFCiD1CiBjV73Kcar4rnYOvEOK4EOKc6hymqea7zDkAgBDCUwhxRgixWfXcpeJ3J86ee4t73lXFwrlXZpx7maNx7uVrXmu5eu4tLnkXsH/u5UKCeboQUYTGuJuTAOwionAAu1TPZSGE8AQwH8AzABoAeFUI0UAI0QVAHwBNiKghgO+M7Kbw+cHC7e1tOYAeheY5zd/ADPkA3iei+gDaABglhGgA1zqHHABPElFTABEAeggh2sC1zgEAxgGI0XjuavG7G6fMvW6SdwHOvc6Acy+TA+de+SyHa+ddwPVzb3HJu4C9cy8R8WRkAhAHIKjQvFgAlVWPKwOIlTG+tgD+0Xg+WTWtA9CtKOenmm/W9g48zzAA0c74NyjCuWwE0N1VzwFASQCnAbR2pXMAEKJKmk8C2Ozqr6PiPjlz7nWXvKuKiXOvk0yce3ly0N+Lc6/8f4Nik3dVMbts7nXVvKuK0e65l1skmEYA/hVCnBJCvKWaV5GI7gCA6mcF2aIDqgK4pfE8XjWvDoCOQohjQoh9QoiWACCEqCKE2Kqxvr7zg6HtnYgz/Q3MJoQIA9AMwDG42DmomkedBZAEYAcRudo5zAHwAQCFxjxXit/dOHPudde8CzjP38AinHtlNQece10J517ny73O8vu3mKvm3mKQdwEH5F4vazZ2E+2J6LYQogKAHUKIS3IHVIjQM4+g/NuWg7JJUUsA64QQNYnoNoCeGuvqnB8R7TeyPY8XWkRCCH8A6wGMJ6J0IfT96ZwXERUAiBBClAXwpxCikcwhmU0I0QtAEhGdEkJ0ljkcZh5nzr2cd10I5175cO51SZx7OffahCvnXlfOu4Djci+3SDBBlYRAREkA/gTQCsBdIURlAFD9TJIvQsQDCNV4HgLgtmr+BlI6DmU1KqjwxgbOD+ZuLyNn+huYJITwhjKZ/kpEG1SzXeoc1IgoFcBeKO/hc5VzaA+gtxAiDsAaAE8KIVbBdeJ3O06ee9017wLO8zcwC+de2XHudTGce50y9zrL799sxSX3umjeBRyUe7mQYIQQopQQorT6MYCnAEQD2ARgsGq1wVDe+yOXEwDChRA1hBA+AF6BMr6/oLwnBkKIOgB8ANzX3NDI+cGc7WXmTH8Do4SyBLsUQAwRzdJY5ErnEKyqykII4QegG4BLcJFzIKLJRBRCRGFQvkd2E9EAuEj87sYFcq+75l3Aef4GJnHulR/nXtfCuddpc6+z/P7N4uq519XzLuDA3Kuv4wSepE4qagI4p5ouAJiiml8eys4rLqt+BsocZ08A/wG4qhGjD4BVUCbJ01D2PgoAVQBsNXZ+xraX6fxWA7gDIA/KqvEwZ/sbmIi/A5RN76IAnFVNPV3sHJoAOKM6h2gAn6jmu8w5aJxLZzzudMbl4neHyRVyb3HPu6p4OPfKfw6ce3ly5N+Icy9f89riHFw69xanvKuK2265V6h2yhhjjDHGGGOMMWYS39rAGGOMMcYYY4wxs3EhgTHGGGOMMcYYY2bjQgJjjDHGGGOMMcbMxoUExhhjjDHGGGOMmY0LCYwVI0KIUCHEHiFEjBDighBinMayQCHEDiHEZdXPcqr55VXbZAgh5mmsX1IIsUUIcUm1r6+NHHeI5rYG1gkTQkQbWGYotteFEGc1JoUQIkLP9jWEEMdU269VDQulXtZZte0FIcQ+A8dfLoS4rnGcCEu2Z4y5N869nHsZY47FeVf+vMuFBMaKl3wA7xNRfQBtAIwSQjRQLZsEYBcRhUM55Msk1fxsAB8DmKBnf98RUT0AzQC0F0I8Y6e49cZGRL8SUQQRRQAYCCCOiM7q2X4mgNmq7R9AOVwShHIc4AUAehNRQwD9jMQwUX0s9TEs3J4x5r4493LuZYw5FuddmfMuFxIYK0aI6A4RnVY9fgggBkBV1eI+AFaoHq8A8LxqvUdEdBDK5Kq5r0wi2qN6nAvl2MohpmJQVTr7ajzPMCN0vbEV8iqU4ysXPp4A8CSAP/Rs/xqADUR0U3UeSWbEosna7RljboBzr872nHsZY3bFeVdne4fnXS4kMFZMCSHCoKyqHlPNqkhEdwBl8gVQwYJ9lQXwHJSVU3swJ7b+0JNUAZQHkEpE+arn8Xj8j6QOgHJCiL1CiFNCiEHqjYQQW4UQVTT2M10IESWEmC2EKGFqe8YY04dzLwDOvYwxB+K8C0CGvOtlagXGmOsRQvgDWA9gPBGlW7kvLyiT2f+I6Jot4itCDK0BZBKRvvvNhJ55pPrpBaAFgK4A/AAcEUIcJaL/iKinxvqTASQC8AGwGMCHAD43tr0NTosxVsxw7uXcyxhzLM678uVdbpHAWDEjhPCGMqH+SkQbNBbdFUJUVq1TGYC5TZ4WA7hMRHNU23pqdNDyuZ7186HKLaomWD6FVxBC/KzafquZsb0C/ZVZALgPoKwq+QPKpmi3VY/jAWxXNWW7D2A/gKaFd6BqHkdElAPgZwCtLNmeMcY493LuZYw5FuddefMuFxIYK0ZUSWwpgBgimlVo8SYAg1WPBwPYaMb+vgQQAGC8eh4RFWh00PKJns3ioKxoAsr7wLwLr0BEb6i2V1dIDcYmhPCAssOXNfpiJCICsAeA+h41ze03AugohPASQpQE0BrKe+gKn6c6oQso7zWLtmR7xph749yrsz3nXsaYXXHe1dne8XmXiHjiiadiMgHoAGUTpygAZ1VTT9Wy8lDe73VZ9TNQY7s4ACkAMqCsSDaAsspJqiSi3tdwA8cdDuB71eOKAI4COA7gKwAZqvlhAKINbG8sts4Ajpo475qq410B8DuAEhrLJgK4qEqU4zXmbwVQRfV4N4DzqnVWAfA3tT1PPPHEk3ri3Mu5lyeeeHLsxHlX/rwrVBsxxliRCSFmQ9kUbIHcsTDGmLvg3MsYY47FefcxLiQwxqwihNgG5T1hLxJRmtzxMMaYO+DcyxhjjsV5VxsXEhhjjDHGGGOMMWY27myRMcYYY4wxxhhjZuNCAmOMMcYYY4wxxszGhQTGGGOMMcYYY4yZjQsJjDHGGGOMMcYYMxsXEhhjjDHGGGOMMWa2/wM0Xz95xcMEAgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig = events[0].plot(figsize=(15, 15))" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "event_id\n", "0.0 0.0\n", "0.1 0.0\n", "0.2 0.0\n", "3.3 0.0\n", "0.3 0.0\n", "4.3 0.0\n", "4.4 0.0\n", "2.4 0.0\n", "1.6 0.0\n", "1.7 0.0\n", "1.8 0.0\n", "4.7 0.0\n", "2.7 0.0\n", "2.8 0.0\n", "4.9 0.0\n", "0.10 0.0\n", "1.12 0.0\n", "2.9 0.0\n", "4.11 0.0\n", "2.11 0.0\n", "2.12 0.0\n", "4.13 0.0\n", "0.14 0.0\n", "1.15 0.0\n", "6.8 0.0\n", "3.12 0.0\n", "2.14 0.0\n", "4.17 0.0\n", "4.18 0.0\n", "2.17 0.0\n", "2.18 0.0\n", "2.19 0.0\n", "4.20 0.0\n", "2.21 0.0\n", "3.13 0.0\n", "1.20 0.0\n", "4.22 0.0\n", "1.22 0.0\n", "2.24 0.0\n", "6.13 0.0\n", "2.25 0.0\n", "2.26 0.0\n", "2.27 0.0\n", "1.25 0.0\n", "2.28 0.0\n", "5.0 0.0\n", "6.14 0.0\n", "2.29 0.0\n", "2.30 0.0\n", "2.31 0.0\n", "7.0 0.0\n", "1.27 0.0\n", "2.32 0.0\n", "1.28 0.0\n", "Name: longitude, dtype: float64" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "template_group.catalog.longitude - template_group.catalog.catalog.longitude" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3.10.4 ('hy7_py310')", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.4" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "221f0e5b1b98151b07a79bf3b6d0c1d306576197d2c4531763770570a29e708e" } } }, "nbformat": 4, "nbformat_minor": 2 }